9 resultados para water exchange
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.
Resumo:
The use of water suppression for in vivo proton MR spectroscopy diminishes the signal intensities from resonances that undergo magnetization exchange with water, particularly those downfield of water. To investigate these exchangeable resonances, an inversion transfer experiment was performed using the metabolite cycling technique for non-water-suppressed MR spectroscopy from a large brain voxel in 11 healthy volunteers at 3.0 T. The exchange rates of the most prominent peaks downfield of water were found to range from 0.5 to 8.9 s(-1), while the T(1) relaxation times in absence of exchange were found to range from 175 to 525 ms. These findings may help toward the assignments of the downfield resonances and a better understanding of the sources of contrast in chemical exchange saturation transfer imaging.
Resumo:
Many metabolites in the proton magnetic resonance spectrum undergo magnetization exchange with water, such as those in the downfield region (6.0-8.5 ppm) and the upfield peaks of creatine, which can be measured to reveal additional information about the molecular environment. In addition, these resonances are attenuated by conventional water suppression techniques complicating detection and quantification. To characterize these metabolites in human skeletal muscle in vivo at 3 T, metabolite cycled non-water-suppressed spectroscopy was used to conduct a water inversion transfer experiment in both the soleus and tibialis anterior muscles. Resulting median exchange-independent T(1) times for the creatine methylene resonances were 1.26 and 1.15 s, and for the methyl resonances were 1.57 and 1.74 s, for soleus and tibialis anterior muscles, respectively. Magnetization transfer rates from water to the creatine methylene resonances were 0.56 and 0.28 s(-1) , and for the methyl resonances were 0.39 and 0.30 s(-1) , with the soleus exhibiting faster transfer rates for both resonances, allowing speculation about possible influences of either muscle fibre orientation or muscle composition on the magnetization transfer process. These water magnetization transfer rates observed without water suppression are in good agreement with earlier reports that used either postexcitation water suppression in rats, or short CHESS sequences in human brain and skeletal muscle.
Resumo:
Water vapour, despite being a minor constituent in the Martian atmosphere with its precipitable amount of less than 70 pr. μm, attracts considerable attention in the scientific community because of its potential importance for past life on Mars. The partial pressure of water vapour is highly variable because of its seasonal condensation onto the polar caps and exchange with a subsurface reservoir. It is also known to drive photochemical processes: photolysis of water produces H, OH, HO2 and some other odd hydrogen compounds, which in turn destroy ozone. Consequently, the abundance of water vapour is anti-correlated with ozone abundance. The Herschel Space Observatory provides for the first time the possibility to retrieve vertical water profiles in the Martian atmosphere. Herschel will contribute to this topic with its guaranteed-time key project called "Water and related chemistry in the solar system". Observations of Mars by Heterodyne Instrument for the Far Infrared (HIFI) and Photodetector Array Camera and Spectrometer (PACS) onboard Herschel are planned in the frame of the programme. HIFI with its high spectral resolution enables accurate observations of vertically resolved H2O and temperature profiles in the Martian atmosphere. Unlike HIFI, PACS is not capable of resolving the line-shape of molecular lines. However, our present study of PACS observations for the Martian atmosphere shows that the vertical sensitivity of the PACS observations can be improved by using multiple-line observations with different line opacities. We have investigated the possibility of retrieving vertical profiles of temperature and molecular abundances of minor species including H2O in the Martian atmosphere using PACS. In this paper, we report that PACS is able to provide water vapour vertical profiles for the Martian atmosphere and we present the expected spectra for future PACS observations. We also show that the spectral resolution does not allow the retrieval of several studied minor species, such as H2O2, HCl, NO, SO2, etc.
Resumo:
Matrix pore water in the connected inter- and intragranular pore space of low-permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the Olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes (δ18O, δ2H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present-day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and be brought into context with the palaeohydrological evolution of the site.
Resumo:
Grassland is an important ecosystem type which is not only used agriculturally, but also covers sites which cannot be used for other purposes, e.g. in very steep locations or above timberlines. Prolonged summer droughts in the mid-term future, as are predicted for Central Europe, are expected to have a major impact on such ecosystems. To address this topic, rainfall exclusion via shelters was performed on three grassland sites at different altitudes (393, 982 and 1978 m above sea level) in Switzerland. Diurnal drought treatment effects were studied at each study site on a completely sunny day towards the end of an 8–10 week shelter period. Ecophysiological parameters including gas exchange (An, gs and intrinsic WUE) and chlorophyll a fluorescence (Fv/Fm, ΦPSII and NPQ) were considered for several species. The lowland and the Alpine field site were more strongly affected by soil drought than the pre-Alpine site. At all sites, grasses showed different patterns of reductions in stomatal conductance under soil drought compared to legumes and forbs. In addition, grasses were significantly more affected by reductions in assimilation rates at all sites. Time courses of reductions in assimilation rates relative to controls differed between species at the Alpine site, as some species showed reduced assimilation rates at this site in the early morning. Thus, similar rainfall exclusion treatments can trigger different reactions in various species at different sites, which might not become obvious during mere midday measurements. Overall, results suggest strong impacts of prolonged summer drought on grassland net photosynthesis especially at the Alpine site and, within sites, for grasses
Resumo:
The determination of stable isotope contents of pore-water from consolidated argillaceous rocks remains a critical issue. In order to understand the processes involved in techniques developed for acquiring stable isotope compositions of pore-water, a comparative study between different methods was based on core samples of the Tournemire argillite. It concerns two water extraction techniques based on vacuum distillation and two pore-water equilibration techniques (radial diffusion in liquid phase and diffusive exchange in vapor phase). The water-content values obtained from vacuum distillation at 50 °C are always the lowest, on average 8% lower than the values obtained by heating at 105 °C and 17% lower than the values obtained by heating at 150 °C. The amounts of pore-water estimated from vacuum distillation at 105 °C and 150 °C and from radial diffusion method are in good agreement with those determined by heating. On the contrary, the vapor exchange method provides the highest values of water contents. Concerning stable isotope data, a good agreement was found between those obtained by equilibration techniques and those of fracture water, especially for 2H. Vacuum distillation at high temperature (particularly at 150 °C) also provided results consistent with data of fracture fluids. On the other hand, distillation at 50 °C provides a systematic depletion in heavy isotopes (about –20‰ for 2H and –2.7‰ for 18O) that can be modelled by an incomplete Rayleigh-type distillation process.
Resumo:
The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1, 2, 3. However, uncertainties in the magnitude4, 5, 6 and consequences7, 8 of the physiological responses9, 10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ~0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.
Resumo:
For successful implementation of any soil and water conservation (SWC) or sustainable land management practice, it is essential to have a proper understanding of the natural and human environment in which these practices are applied. This understanding should be based on comprehensive information concerning the application of the technologies and not solely on the technological details. The World Overview of Conservation Approaches and Technologies (WOCAT) is documenting and evaluating SWC practices worldwide, following a standardised methodology that facilitates exchange and comparison of experiences. Notwithstanding this standardisation, WOCAT allows flexible use of its outputs, adapted to different users and different environments. WOCAT offers a valuable tool for evaluating the strengths and weaknesses of SWC practices and their potential for application in other areas. Besides collecting a wealth of information, gaps in available information are also exposed, showing the need for more research in those fields. Several key issues for development- oriented research have been identified and are being addressed in collaboration with a research programme for mitigating syndromes of global change.