33 resultados para volume of fluid method

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n = 14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO(2) oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO(2) oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO(2) oscillations amplitude (P < 0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P = 0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO(2) oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ketamine and norketamine are being transported across the blood brain barrier and are also entering from blood into cerebrospinal fluid (CSF). Enantioselective distributions of these compounds in brain and CSF have never been determined. The enantioselective CE based assay previously developed for equine plasma was adapted to the analysis of these compounds in equine brain via use of an acidic pre-extraction of interferences prior to liquid/liquid extraction at alkaline pH. CSF can be treated as plasma. With 100 mg of brain tissue and 0.5 mL of CSF or plasma, assay conditions for up to 30 nmol/g and 6 μM, respectively, of each enantiomer with LOQs of 0.5 nmol/g and 0.1 μM, respectively, were established and the assays were applied to equine samples. CSF and plasma samples analyzed stemmed from anesthetized patient horses and brain, CSF and plasma were obtained from anesthetized horses that were euthanized with an overdose of pentobarbital. Data obtained indicate that ketamine and norketamine enantiomers are penetrating into brain and CSF with those of ketamine being more favorably transported than norketamine, whereas metabolites of norketamine are hindered. More work is required to properly investigate possible stereoselectivities of the ketamine metabolism and transport of metabolites from blood into brain tissue and CSF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voluntary exercise (VE) has a beneficial influence on the heart and mean lifespan. The present study evaluates structural adaptations of cardiomyocytes and their mitochondria due to VE by new, unbiased stereological methods. Female, 7-9-week-old mice were randomly assigned to a control (CG, n = 7) or VE group (EG, n = 7). EG animals were housed in cages with free access to a running wheel and had a mean running distance of 6.7 (1.8) km per day. After 4 weeks, the hearts of all mice were processed for light and electron microscopy. We estimated the number and volume of cardiomyocytes by the disector method and the number and volume of mitochondria by estimation of the Euler number. In comparison to CG, VE did not have an effect on the myocardial volume of the left ventricle (CG: 93 (10), EG: 103 (17) (mm(3))), the number of cardiomyocytes (CG: 2.81 (0.27), EG: 2.82 (0.43) (x10(6))) and their number-weighted mean volume. However, the composition of the cardiomyocytes changed due to VE. The total volume of mitochondria (CG: 21.8 (4.9), EG: 32.2 (4.3) (mm(3)), P < 0.01) and the total number (CG: 3.76 (0.44), EG: 7.02 (1.13) (x10(10)), P < 0.001) were significantly higher in EG than in CG. The mean number-weighted mitochondrial volume was smaller in EG than in CG (P < 0.05). In summary, VE does not alter ventricular volume nor cardiomyocyte volume or number but the oxidative capacity of cardiomyocytes by an increased mitochondrial number and total volume in the left ventricle. These structural changes may participate in the beneficial effects of VE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Several recent studies have shown that a positive fluid balance in critical illness is associated with worse outcome. We tested the effects of moderate vs. high-volume resuscitation strategies on mortality, systemic and regional blood flows, mitochondrial respiration, and organ function in two experimental sepsis models. Methods 48 pigs were randomized to continuous endotoxin infusion, fecal peritonitis, and a control group (n = 16 each), and each group further to two different basal rates of volume supply for 24 hours [moderate-volume (10 ml/kg/h, Ringer's lactate, n = 8); high-volume (15 + 5 ml/kg/h, Ringer's lactate and hydroxyethyl starch (HES), n = 8)], both supplemented by additional volume boli, as guided by urinary output, filling pressures, and responses in stroke volume. Systemic and regional hemodynamics were measured and tissue specimens taken for mitochondrial function assessment and histological analysis. Results Mortality in high-volume groups was 87% (peritonitis), 75% (endotoxemia), and 13% (controls). In moderate-volume groups mortality was 50% (peritonitis), 13% (endotoxemia) and 0% (controls). Both septic groups became hyperdynamic. While neither sepsis nor volume resuscitation strategy was associated with altered hepatic or muscle mitochondrial complex I- and II-dependent respiration, non-survivors had lower hepatic complex II-dependent respiratory control ratios (2.6 +/- 0.7, vs. 3.3 +/- 0.9 in survivors; P = 0.01). Histology revealed moderate damage in all organs, colloid plaques in lung tissue of high-volume groups, and severe kidney damage in endotoxin high-volume animals. Conclusions High-volume resuscitation including HES in experimental peritonitis and endotoxemia increased mortality despite better initial hemodynamic stability. This suggests that the strategy of early fluid management influences outcome in sepsis. The high mortality was not associated with reduced mitochondrial complex I- or II-dependent muscle and hepatic respiration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly from Paco2. The TcPco2 or GiPco2 values did not differ significantly at any time point in birds that survived or died in any of the groups and across all groups. These results showed no difference in mortality in leghorn chickens treated with fluid resuscitation after hemorrhagic shock and that the PCV and hemoglobin concentrations increased by 3 days after acute hemorrhage with or without treatment. The different CO2 measurements document changes in CO2-values consistent with poor perfusion and may prove useful for serial evaluation of responses to shock and shock treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyper- and hyponatremia are frequently observed in patients after subarachnoidal hemorrhage, and are potentially related to worse outcome. We hypothesized that the fluid regimen in these patients is associated with distinct changes in serum electrolytes, acid-base disturbances, and fluid balance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affinity retardation chromatography (ARC), a method for the examination of low-affinity interactions, is mathematically described in order to characterize the method itself and to estimate binding coefficients of self-assembly domains of basement membrane protein laminin. Affinity retardation was determined by comparing the elutions on a "binding" and on a "nonreacting" column. It depends on the binding coefficient, the concentrations of both ligands, and the nonbinding elution position. Half maximal binding of the NH2-terminal domain of laminin B1-short arm to the A- and/or B2-short arms was estimated to occur at 10-17 microM for noncooperative and at < or = 3 microM for cooperative binding. A model of the laminin polymerization, postulating two levels of cooperative binding behavior, is described.