2 resultados para visual exposure

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To explore the variability in pain response in preterm infants across time who received sucrose during routine heel stick. METHOD: Single group, exploratory repeated measures design. SETTING: Two tertiary level neonatal intensive care units (NICU) in Switzerland. SUBJECTS: Nine preterm infants born between 28 2/7 and 31 4/7 weeks of gestation during their first 14 days of life. MEASUREMENTS: Pain was assessed by the Bernese Pain Scale for Neonates (BPSN), the Premature Infant Pain Profile (PIPP) and the Visual Analogue Scale (VAS). Salivary cortisol was analysed. RESULTS: 72-94% of the variability was within-subject variability, indicating inconsistency of pain responses across the 5 heel sticks. Interrater agreement was highest during heel sticks 1-3 and decreased during heel stick 4 and 5, indicating a possible alteration of pain patterns. No significant differences in the amount of cortisol could be detected before and after the heel sticks (p = 0.55), indicating no stress-induced peak after the painful intervention. However, a general gradual decrease of cortisol levels across time could be detected. CONCLUSION: A high variability in pain response among preterm neonates across time could be described. Consistency of cortisol levels before and after the heel sticks could indicate the effectiveness of sucrose across time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.