4 resultados para viral capacity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
After structured treatment interruption (STI) of treatment for HIV-1, a fraction of patients maintain suppressed viral loads. Prospective identification of such patients might improve HIV-1 treatment, if selected patients are offered STI.
Resumo:
The interaction of bovine viral diarrhea virus (BVD virus) with its host has several unique features, most notably the capacity to infect its host either transiently or persistently. The transient infection stimulates an antiviral immune reaction similar to that seen in other transient viral infections. In contrast, being associated with immunotolerance specific for the infecting BVD viral strain, the persistent infection differs fundamentally from other persistent infections like those caused by lentiviruses. Whereas the latter are characterized by complex viral evasion of the host's adaptive immune response by mechanisms such as antigenic drift and interference with presentation of T cell epitopes, BVD virus avoids the immune response altogether by inducing both humoral and cellular immune tolerance. This is made possible by invasion of the fetus at an early stage of development. In addition to adaptive immunity, BVD virus also manipulates key elements of the host's innate immune response. The non-cytopathic biotype of BVD virus, which is capable of persistently infecting its host, fails to induce type I interferon. In addition, persistently infected cells are resistant to the induction of apoptosis by double-stranded RNA and do not produce interferon when treated with this pathogen-associated molecular pattern (PAMP) that signals viral infection. Moreover, when treated with interferon, cells persistently infected with non-cytopathic BVD virus do not clear the virus. Surprisingly, however, despite this lack of effect on persistent infection, interferon readily induces an antiviral state in these cells, as shown by the protection against infection by unrelated viruses. Overall, BVD virus manipulates the host's interferon defense in a manner that optimises its chances of maintaining the persistent infection as well as decreasing the risks that heterologous viral infections may carry for the host. Thus, since not all potential host cells are infected in animals persistently infected with BVD virus, heterologous viruses replicating in cells uninfected with BVD virus will still trigger production of interferon. Interferon produced by such cells will curtail the replication of heterologous viruses only, be that in cells already infected with BVD virus, or in cells in which the heterologous virus may replicate alone. From an evolutionary viewpoint, this strategy clearly enhances the chances of transmission of BVD virus to new hosts, as it attenuates the negative effects that a global immunosuppression would have on the survival of persistently infected animals.
Resumo:
BACKGROUND HIV-1 RNA viral load (VL) testing is recommended to monitor antiretroviral therapy (ART) but not available in many resource-limited settings. We developed and validated CD4-based risk charts to guide targeted VL testing. METHODS We modeled the probability of virologic failure up to 5 years of ART based on current and baseline CD4 counts, developed decision rules for targeted VL testing of 10%, 20% or 40% of patients in seven cohorts of patients starting ART in South Africa, and plotted cut-offs for VL testing on colour-coded risk charts. We assessed the accuracy of risk chart-guided VL testing to detect virologic failure in validation cohorts from South Africa, Zambia and the Asia-Pacific. FINDINGS 31,450 adult patients were included in the derivation and 25,294 patients in the validation cohorts. Positive predictive values increased with the percentage of patients tested: from 79% (10% tested) to 98% (40% tested) in the South African, from 64% to 93% in the Zambian and from 73% to 96% in the Asia-Pacific cohorts. Corresponding increases in sensitivity were from 35% to 68% in South Africa, from 55% to 82% in Zambia and from 37% to 71% in Asia-Pacific. The area under the receiver-operating curve increased from 0.75 to 0.91 in South Africa, from 0.76 to 0.91 in Zambia and from 0.77 to 0.92 in Asia Pacific. INTERPRETATION CD4-based risk charts with optimal cut-offs for targeted VL testing may be useful to monitor ART in settings where VL capacity is limited.
Resumo:
BACKGROUND HIV-1 RNA viral load (VL) testing is recommended to monitor antiretroviral therapy (ART) but not available in many resource-limited settings. We developed and validated CD4-based risk charts to guide targeted VL testing. METHODS We modeled the probability of virologic failure up to 5 years of ART based on current and baseline CD4 counts, developed decision rules for targeted VL testing of 10%, 20%, or 40% of patients in 7 cohorts of patients starting ART in South Africa, and plotted cutoffs for VL testing on colour-coded risk charts. We assessed the accuracy of risk chart-guided VL testing to detect virologic failure in validation cohorts from South Africa, Zambia, and the Asia-Pacific. RESULTS In total, 31,450 adult patients were included in the derivation and 25,294 patients in the validation cohorts. Positive predictive values increased with the percentage of patients tested: from 79% (10% tested) to 98% (40% tested) in the South African cohort, from 64% to 93% in the Zambian cohort, and from 73% to 96% in the Asia-Pacific cohort. Corresponding increases in sensitivity were from 35% to 68% in South Africa, from 55% to 82% in Zambia, and from 37% to 71% in Asia-Pacific. The area under the receiver operating curve increased from 0.75 to 0.91 in South Africa, from 0.76 to 0.91 in Zambia, and from 0.77 to 0.92 in Asia-Pacific. CONCLUSIONS CD4-based risk charts with optimal cutoffs for targeted VL testing maybe useful to monitor ART in settings where VL capacity is limited.