6 resultados para vigorous activity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background The dose–response relation between physical activity and all-cause mortality is not well defined at present. We conducted a systematic review and meta-analysis to determine the association with all-cause mortality of different domains of physical activity and of defined increases in physical activity and energy expenditure. Methods MEDLINE, Embase and the Cochrane Library were searched up to September 2010 for cohort studies examining all-cause mortality across different domains and levels of physical activity in adult general populations. We estimated combined risk ratios (RRs) associated with defined increments and recommended levels, using random-effects meta-analysis and dose–response meta-regression models. Results Data from 80 studies with 1 338 143 participants (118 121 deaths) were included. Combined RRs comparing highest with lowest activity levels were 0.65 [95% confidence interval (95% CI) 0.60–0.71] for total activity, 0.74 (95% CI 0.70–0.77) for leisure activity, 0.64 (95% CI 0.55–0.75) for activities of daily living and 0.83 (95% CI 0.71–0.97) for occupational activity. RRs per 1-h increment per week were 0.91 (95% CI 0.87–0.94) for vigorous exercise and 0.96 (95% CI 0.93–0.98) for moderate-intensity activities of daily living. RRs corresponding to 150 and 300 min/week of moderate to vigorous activity were 0.86 (95% CI 0.80–0.92) and 0.74 (95% CI 0.65–0.85), respectively. Mortality reductions were more pronounced in women. Conclusion Higher levels of total and domain-specific physical activity were associated with reduced all-cause mortality. Risk reduction per unit of time increase was largest for vigorous exercise. Moderate-intensity activities of daily living were to a lesser extent beneficial in reducing mortality.
Resumo:
Regular physical activity beneficially impacts the risk of onset and progression of several chronic diseases. However, research regarding the effects of exercising on chronic liver diseases is relatively recent. Most authors focused on non-alcoholic fatty liver disease (NAFLD), in which increasing clinical and experimental data indicate that skeletal muscle cross-talking to the adipose tissue and the liver regulates intrahepatic fat storage. In this setting physical activity is considered required in combination with calories restriction to allow an effective decrease of intrahepatic lipid component, and despite that evidence is not conclusive, some studies suggest that vigorous activity might be more beneficial than moderate activity to improve NAFLD/NASH. Evidence regarding the effects of exercise on the risk of hepatocellular carcinoma is scarce; some epidemiological studies indicate a lower risk in patients regularly and vigorously exercising. In compensated cirrhosis exercise acutely increases portal pressure, but in longer term it has been proved safe and probably beneficial. Decreased aerobic capacity (VO2) correlates with mortality in patients with decompensated cirrhosis, who are almost invariably sarcopenic. In these patients VO2 is improved by physical activity, which might also reduce the risk of hepatic encephalopathy through an increase in skeletal muscle mass. In solid organ transplantation recipients exercise is able to improve lean mass, muscle strength and as a consequence, aerobic capacity. Few data exist in liver transplant recipients, in whom exercise should be object of future studies given its high potential of providing long-term beneficial effects. Despite evidence is far from complete, physical activity should be seen as an important part of the management of patients with liver disease in order to improve their clinical outcome. This article is protected by copyright. All rights reserved.
Resumo:
The ActiGraph accelerometer is commonly used to measure physical activity in children. Count cut-off points are needed when using accelerometer data to determine the time a person spent in moderate or vigorous physical activity. For the GT3X accelerometer no cut-off points for young children have been published yet. The aim of the current study was thus to develop and validate count cut-off points for young children. Thirty-two children aged 5 to 9 years performed four locomotor and four play activities. Activity classification into the light-, moderate- or vigorous-intensity category was based on energy expenditure measurements with indirect calorimetry. Vertical axis as well as vector magnitude cut-off points were determined through receiver operating characteristic curve analyses with the data of two thirds of the study group and validated with the data of the remaining third. The vertical axis cut-off points were 133 counts per 5 sec for moderate to vigorous physical activity (MVPA), 193 counts for vigorous activity (VPA) corresponding to a metabolic threshold of 5 MET and 233 for VPA corresponding to 6 MET. The vector magnitude cut-off points were 246 counts per 5 sec for MVPA, 316 counts for VPA - 5 MET and 381 counts for VPA - 6 MET. When validated, the current cut-off points generally showed high recognition rates for each category, high sensitivity and specificity values and moderate agreement in terms of the Kappa statistic. These results were similar for vertical axis and vector magnitude cut-off points. The current cut-off points adequately reflect MVPA and VPA in young children. Cut-off points based on vector magnitude counts did not appear to reflect the intensity categories better than cut-off points based on vertical axis counts alone.
Resumo:
The prevalence of a cam-type deformity in athletes and its association with vigorous sports activities during and after the growth period is unknown.
Resumo:
We examined the impact of physical activity (PA) on surrogate markers of cardiovascular health in adolescents. 52 healthy students (28 females, mean age 14.5 ± 0.7 years) were investigated. Microvascular endothelial function was assessed by peripheral arterial tonometry to determine reactive hyperemic index (RHI). Vagal activity was measured using 24 h analysis of heart rate variability [root mean square of successive normal-to-normal intervals (rMSSD)]. Exercise testing was performed to determine peak oxygen uptake ([Formula: see text]) and maximum power output. PA was assessed by accelerometry. Linear regression models were performed and adjusted for age, sex, skinfolds, and pubertal status. The cohort was dichotomized into two equally sized activity groups (low vs. high) based on the daily time spent in moderate-to-vigorous PA (MVPA, 3,000-5,200 counts(.)min(-1), model 1) and vigorous PA (VPA, >5,200 counts(.)min(-1), model 2). MVPA was an independent predictor for rMSSD (β = 0.448, P = 0.010), and VPA was associated with maximum power output (β = 0.248, P = 0.016). In model 1, the high MVPA group exhibited a higher vagal tone (rMSSD 49.2 ± 13.6 vs. 38.1 ± 11.7 ms, P = 0.006) and a lower systolic blood pressure (107.3 ± 9.9 vs. 112.9 ± 8.1 mmHg, P = 0.046). In model 2, the high VPA group had higher maximum power output values (3.9 ± 0.5 vs. 3.4 ± 0.5 W kg(-1), P = 0.012). In both models, no significant differences were observed for RHI and [Formula: see text]. In conclusion, in healthy adolescents, PA was associated with beneficial intensity-dependent effects on vagal tone, systolic blood pressure, and exercise capacity, but not on microvascular endothelial function.
Resumo:
Background: In the last decades, children’s and adolescents’ obesity and overweight have increased in European Countries. Unhealthy eating habits and sedentary lifestyle have been recognized to determine such an epidemic. Schools represent an ideal setting to modify harmful behaviors, and physical activity could be regarded as a potential way to avoid the metabolic risks related to obesity. Methods: A systematic review of the literature was carried out to summarize the evidence of school-based interventions aimed to promote, enhance and implement physical activity in European schools. Only randomized controlled trials were included, carried out in Europe from January 2000 to April 2014, universally delivered and targeting pupils aged between 3 and 18 years old. Results: Forty-seven studies were retrieved based either on multicomponent interventions or solely physical activity programs. Most aimed to prevent obesity and cardiovascular risks among youths. While few studies showed a decrease in BMI, positive results were achieved on other outcomes, such as metabolic parameters and physical fitness. Conclusion: Physical activity in schools should be regarded as a simple, non-expensive and enjoyable way to reach all the children and adolescents with adequate doses of moderate to vigorous physical activity.