15 resultados para vertebrate hosts
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Theoretical models of host-parasite coevolution assume a partially genetic basis to the variability in susceptibility to parasites among hosts, for instance as a result of genetic variation in immune function. However, few empirical data exist for free-living vertebrate hosts to support this presumption. In a cross-fostering experiment with nestling great tits, by comparing nestlings of the same origin we investigated (i) the variance in host resistance against an ectoparasite due to a common genetic origin, (ii) the effect of ectoparasite infestation on cell-mediated immunity and (iii) the variance in cell-mediated immunity due to a common genetic origin. Ectoparasitic hen fleas can impair the growth of nestling great tits and nestling growth was therefore taken as a measure of host susceptibility. A common origin did not account for a significant part of the variation in host susceptibility to fleas. There was no significant overall effect of fleas on nestling growth or cell-mediated immunity, as assessed by a cutaneous hypersensitivity response. A common rearing environment explained a significant part of the variation in cell-mediated immunity among nestlings, mainly through its effect on nestling body mass. The variation in cell-mediated immunity was also related to a common origin. However, the origin-related variation in body mass did not account for the origin-related differences in cell-mediated immunity. The results of the present study thus suggest heritable variation in cell-mediated immunity among nestling great tits. [References: 49]
Resumo:
The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.
Resumo:
During vertebrate development, the lung inaugurates as an endodermal bud from the primitive foregut. Dichotomous subdivision of the bud results in arborizing airways that form the prospective gas exchanging chambers, where a thin blood-gas barrier (BGB) is established. In the mammalian lung, this proceeds through conversion of type II cells to type I cells, thinning, and elongation of the cells as well as extrusion of the lamellar bodies. Subsequent diminution of interstitial tissue and apposition of capillaries to the alveolar epithelium establish a thin BGB. In the noncompliant avian lung, attenuation proceeds through cell-cutting processes that result in remarkable thinning of the epithelial layer. A host of morphoregulatory molecules, including transcription factors such as Nkx2.1, GATA, HNF-3, and WNT5a; signaling molecules including FGF, BMP-4, Shh, and TFG- β and extracellular proteins and their receptors have been implicated. During normal physiological function, the BGB may be remodeled in response to alterations in transmural pressures in both blood capillaries and airspaces. Such changes are mitigated through rapid expression of the relevant genes for extracellular matrix proteins and growth factors. While an appreciable amount of information regarding molecular control has been documented in the mammalian lung, very little is available on the avian lung.
Resumo:
Parasites are linked with their host in a trophic interaction with implications for both hosts and parasites. Interaction stretches from the host's immune response to the structuring of communities and the evolution of biodiversity. As in many species sex determines life history strategy, response to parasites may be sex-specific. Males of vertebrate species tend to exhibit higher rates of parasites than females. Sex-associated hormones may influence immunocompetence and are hypothesised to lead to this bias. In a field study, we tested the prediction of male biased parasitism (MBP) in free ranging chamois (Rupicapra rupicapra rupicapra), which are infested intensely by gastrointestinal and lung helminths. We further investigated sex differences in faecal androgen (testosterone and epiandrosterone), cortisol and oestrogen metabolites using enzyme immunoassays (EIA) to evaluate the impact of these hormones on sex dependent parasite susceptibility. Non-invasive methods were used and the study was conducted throughout a year to detect seasonal patterns. Hormone levels and parasite counts varied significantly throughout the year. Male chamois had a higher output of gastrointestinal eggs and lungworm larvae when compared to females. The hypothesis of MBP originating in sex related hormone levels was confirmed for the elevated output of lungworm larvae, but not for the gastrointestinal nematodes. The faecal output of lungworm larvae was significantly correlated with androgen and cortisol metabolite levels. Our study shows that sex differences in steroid levels play an important role to explain MBP, although they alone cannot fully explain the phenomenon.
Resumo:
Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus general mechanisms
Resumo:
Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species
Resumo:
The hepatitis E virus (HEV) was first identified in 1990, although hepatitis E-like diseases in humans have been recorded for a long time dating back to the 18th century. The HEV genotypes 1–4 have been subsequently detected in human hepatitis E cases with different geographical distribution and different modes of transmission. Genotypes 3 and 4 have been identified in parallel in pigs, wild boars and other animal species and their zoonotic potential has been confirmed. Until 2010, these genotypes along with avian HEV strains infecting chicken were the only known representatives of the family Hepeviridae. Thereafter, additional HEV-related viruses have been detected in wild boars, distinct HEV-like viruses were identified in rats, rabbit, ferret, mink, fox, bats and moose, and a distantly related agent was described from closely related salmonid fish. This review summarizes the characteristics of the so far known HEV-like viruses, their phylogenetic relationship, host association and proposed involvement in diseases. Based on the reviewed knowledge, a suggestion for a new taxonomic grouping scheme of the viruses within the family Hepeviridae is presented.
Resumo:
The overall composition of the mammalian intestinal microbiota varies between individuals: within each individual there are differences along the length of the intestinal tract related to host nutrition, intestinal motility and secretions. Mucus is a highly regenerative protective lubricant glycoprotein sheet secreted by host intestinal goblet cells; the inner mucus layer is nearly sterile. Here we show that the outer mucus of the large intestine forms a unique microbial niche with distinct communities, including bacteria without specialized mucolytic capability. Bacterial species present in the mucus show differential proliferation and resource utilization compared with the same species in the intestinal lumen, with high recovery of bioavailable iron and consumption of epithelial-derived carbon sources according to their genome-encoded metabolic repertoire. Functional competition for existence in this intimate layer is likely to be a major determinant of microbiota composition and microbial molecular exchange with the host.
Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins
Resumo:
The mechanisms by which cells obtain instructions to precisely re-create the missing parts of an organ remain an unresolved question in regenerative biology. Urodele limb regeneration is a powerful model in which to study these mechanisms. Following limb amputation, blastema cells interpret the proximal-most positional identity in the stump to reproduce missing parts faithfully. Classical experiments showed the ability of retinoic acid (RA) to proximalize blastema positional values. Meis homeobox genes are involved in RA-dependent specification of proximal cell identity during limb development. To understand the molecular basis for specifying proximal positional identities during regeneration, we isolated the axolotl Meis homeobox family. Axolotl Meis genes are RA-regulated during both regeneration and embryonic limb development. During limb regeneration, Meis overexpression relocates distal blastema cells to more proximal locations, whereas Meis knockdown inhibits RA proximalization of limb blastemas. Meis genes are thus crucial targets of RA proximalizing activity on blastema cells.
Resumo:
Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.
Resumo:
Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.