24 resultados para vector quantization based Gaussian modeling

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive event-related potentials (ERPs) are widely employed in the study of dementive disorders. The morphology of averaged response is known to be under the influence of neurodegenerative processes and exploited for diagnostic purposes. This work is built over the idea that there is additional information in the dynamics of single-trial responses. We introduce a novel way to detect mild cognitive impairment (MCI) from the recordings of auditory ERP responses. Using single trial responses from a cohort of 25 amnestic MCI patients and a group of age-matched controls, we suggest a descriptor capable of encapsulating single-trial (ST) response dynamics for the benefit of early diagnosis. A customized vector quantization (VQ) scheme is first employed to summarize the overall set of ST-responses by means of a small-sized codebook of brain waves that is semantically organized. Each ST-response is then treated as a trajectory that can be encoded as a sequence of code vectors. A subject's set of responses is consequently represented as a histogram of activated code vectors. Discriminating MCI patients from healthy controls is based on the deduced response profiles and carried out by means of a standard machine learning procedure. The novel response representation was found to improve significantly MCI detection with respect to the standard alternative representation obtained via ensemble averaging (13% in terms of sensitivity and 6% in terms of specificity). Hence, the role of cognitive ERPs as biomarker for MCI can be enhanced by adopting the delicate description of our VQ scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with approximately 90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.