49 resultados para vanilloid receptor agonist
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Preclinical and clinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In 4 consecutive patients with advanced neuroendocrine tumors, we evaluated whether treatment with (177)Lu-labeled sst antagonists is feasible. METHODS After injection of approximately 1 GBq of (177)Lu-DOTA-[Cpa-c(DCys-Aph(Hor)-DAph(Cbm)-Lys-Thr-Cys)-DTyr-NH2] ((177)Lu-DOTA-JR11) and (177)Lu-DOTATATE, 3-dimensional voxel dosimetry analysis based on SPECT/CT was performed. A higher tumor-to-organ dose ratio for (177)Lu-DOTA-JR11 than for (177)Lu-DOTATATE was the prerequisite for treatment with (177)Lu-DOTA-JR11. RESULTS Reversible minor adverse effects of (177)Lu-DOTA-JR11 were observed. (177)Lu-DOTA-JR11 showed a 1.7-10.6 times higher tumor dose than (177)Lu-DOTATATE. At the same time, the tumor-to-kidney and tumor-to-bone marrow dose ratio was 1.1-7.2 times higher. All 4 patients were treated with (177)Lu-DOTA-JR11, resulting in partial remission in 2 patients, stable disease in 1 patient, and mixed response in the other patient. CONCLUSION Treatment of neuroendocrine tumors with radiolabeled sst antagonists is clinically feasible and may have a significant impact on peptide receptor radionuclide therapy.
Resumo:
Two bombesin analogs, Demobesin 4 and Demobesin 1, were characterized in vitro as gastrin-releasing peptide (GRP) receptor agonist and antagonist, respectively, and were compared as (99m)Tc-labeled ligands for their in vitro and in vivo tumor-targeting properties. METHODS: N(4)-[Pro(1),Tyr(4),Nle(14)]Bombesin (Demobesin 4) and N(4)-[d-Phe(6),Leu-NHEt(13),des-Met(14)]bombesin(6-14) (Demobesin 1) were characterized in vitro for their binding properties with GRP receptor autoradiography using GRP receptor-transfected HEK293 cells, PC3 cells, and human prostate cancer specimens. Their ability to modulate calcium mobilization in PC3 and transfected HEK293 cells was analyzed as well as their ability to trigger internalization of the GRP receptor in transfected HEK293 cells, as determined qualitatively by immunofluorescence microscopy and quantitatively by enzyme-linked immunosorbent assay (ELISA). Further, their internalization properties as (99m)Tc-labeled radioligands were tested in vitro in both cell lines. Finally, their biodistribution was analyzed in PC3 tumor-bearing mice. RESULTS: A comparable binding affinity with the 50% inhibitory concentration (IC(50)) in the nanomolar range was measured for Demobesin 4 and Demobesin 1 in all tested tissues. Demobesin 4 behaved as an agonist by strongly stimulating calcium mobilization and by triggering GRP receptor internalization. Demobesin 1 was ineffective in stimulating calcium mobilization and in triggering GRP receptor internalization. However, in these assays, it behaved as a competitive antagonist as it reversed completely the agonist-induced effects in both systems. (99m)Tc-Labeled Demobesin 1 was only weakly taken up by PC3 cells or GRP receptor-transfected HEK293 cells (10% and 5%, respectively, of total added radioactivity) compared with (99m)Tc-labeled Demobesin 4 (45% of total added radioactivity in both cell lines). Remarkably, the biodistribution study revealed a much more pronounced uptake at 1, 4, and 24 h after injection of (99m)Tc-labeled Demobesin 1 in vivo into PC3 tumors than (99m)Tc-labeled Demobesin 4. In vivo competition experiments demonstrated a specific uptake in PC3 tumors and in physiologic GRP receptor-expressing tissues. The tumor-to-kidney ratios were 0.7 for Demobesin 4 and 5.2 for Demobesin 1 at 4 h. CONCLUSION: This comparative in vitro/in vivo study with Demobesin 1 and Demobesin 4 indicates that GRP receptor antagonists may be superior targeting agents to GRP receptor agonists, suggesting a change of paradigm in the field of bombesin radiopharmaceuticals.
Resumo:
OBJECTIVE Catecholamines released from β-adrenergic neurons upon stress can interfere with periodontal regeneration. The cellular mechanisms, however, are unclear. Here, we assessed the effect of catecholamines on proliferation of periodontal fibroblasts. METHODS Fibroblasts from the gingiva and the periodontal ligament were exposed to agonists of the β-adrenergic receptors; isoproterenol (ISO, non-selective β-adrenergic agonist), salbutamol (SAL, selective β2-adrenergic receptor agonist) and BRL 37344 (BRL selective β3-receptor agonist). Proliferation was stimulated with platelet-derived growth factor-BB (PDGF-BB). Pharmacological inhibitors and gene expression analysis further revealed β-adrenergic signalling. RESULTS Gingiva and periodontal ligament fibroblast express the β2-adrenergic receptor. ISO and SAL but not BRL decreased proliferation of fibroblasts in the presence of PDGF-BB. The inhibitory effect of β-adrenergic signalling on proliferation but not protein synthesis in response to PDGF-BB was reduced by propranolol, a non-selective β-adrenergic antagonist. CONCLUSIONS These results suggest that β2-receptor agonists can reduce the mitogenic response of periodontal fibroblasts. These data add to the compelling concept that blocking of β2-receptor signalling can support tissue maintenance and regeneration.
Resumo:
BACKGROUND: Ibopamine is a non-selective dopamine- and adrenalin-receptor agonist that has been shown to cause pupillary dilation and an increase in aqueous humour secretion. This novel drug can be used as a mydriatic agent, as a provocative test in open-angle glaucoma, and for the treatment of persisting ocular hypotony. HISTORY AND SIGNS: This 47-year-old man had a history of uveitis associated with Crohn's disease. Six years after deep sclerectomy for uveitic secondary glaucoma, he developed severe hypotony in his left eye with drop of visual acuity (VA). The hypotony did not respond to topical steroid treatment. 2 % Ibopamine solution was ordered t. i. d. concomitant to 1 % prednisolone acetate. THERAPY AND OUTCOME: Intraocular pressure (IOP) began to rise after 3 weeks of Ibopamine treatment and returned to normal (12 mmHg) with continuous recovery of VA after 8 weeks. Ibopamine was discontinued at an IOP of 16 mmHg after a course of 12 weeks. IOP and VA remained stable during the 12-month follow-up period. CONCLUSIONS: Ibopamine 2 % eye drops in combination with topical steroids are a therapeutic option in uveitis-associated ocular hypotony.
Resumo:
OBJECTIVE: To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. SAMPLE POPULATION: Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. PROCEDURES: Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (A(max)), and area under the curve (AUC) were evaluated. RESULTS: Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M(3) antagonists (more commonly for basal tone than for A(max) and AUC). The M(2) receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M(3) receptor antagonists were generally more potent than the M(2) receptor antagonists. In a protection experiment, an M(3) receptor antagonist was less potent than when used in combination with an M(2) receptor antagonist. Receptor antagonists for M(1) and M(4) did not affect contractility variables. CONCLUSIONS AND CLINICAL RELEVANCE: Bethanechol acting on muscarinic receptor sub-types M(2) and M(3) may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows.
Resumo:
Whether and to what extent activation of peripheral presynaptic dopamine2-receptors may modulate the release of norepinephrine (NE) and so affect blood pressure (BP) in normal or hypertensive man is not clear. The hydrogenated ergotoxine derivative, co-dergocrine, given in effective antihypertensive rather than excessive experimental doses, has recently been shown to act predominantly as a peripheral dopamine2-receptor agonist in several species. Accordingly, BP regulation assessed has been in 8 normal men on placebo and after 3 weeks on codergocrine 4 mg/day. Co-dergocrine significantly reduced urinary NE excretion from 43 to 33 micrograms/24 h, supine and upright plasma NE 21 to 16 and 49 to 36 ng/dl, respectively, heart rate (-8 and -5%, respectively) and upright systolic BP, 115 to 102 mm Hg; upright diastolic BP also tended to be lower. A standard pressor dose of infused NE was lowered from 131 to 102 ng/kg/min, and the relationship between NE-induced changes in BP and concomitant NE infusion rate or plasma NE concentration was displaced to the left. Exchangeable sodium and plasma volume tended to be slightly decreased. Plasma and urinary electrolytes and epinephrine, plasma renin activity and aldosterone levels, pressor responsiveness to angiotensin II, the chronotropic responses to isoproterenol, and the NE-induced rise in BP, plasma clearance of NE, glomerular filtration rate and effective renal plasma flow were not consistently modified. The findings are consistent with effective peripheral dopamine2-receptor agonism by co-dergocrine in humans. Peripheral presynaptic dopaminergic activation may modulate sympathetic activity and BP in normal man.
Resumo:
BACKGROUND: Unlike most antihyperglycaemic drugs, glucagon-like peptide-1 (GLP-1) receptor agonists have a glucose-dependent action and promote weight loss. We compared the efficacy and safety of liraglutide, a human GLP-1 analogue, with exenatide, an exendin-based GLP-1 receptor agonist. METHODS: Adults with inadequately controlled type 2 diabetes on maximally tolerated doses of metformin, sulphonylurea, or both, were stratified by previous oral antidiabetic therapy and randomly assigned to receive additional liraglutide 1.8 mg once a day (n=233) or exenatide 10 microg twice a day (n=231) in a 26-week open-label, parallel-group, multinational (15 countries) study. The primary outcome was change in glycosylated haemoglobin (HbA(1c)). Efficacy analyses were by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT00518882. FINDINGS: Mean baseline HbA(1c) for the study population was 8.2%. Liraglutide reduced mean HbA(1c) significantly more than did exenatide (-1.12% [SE 0.08] vs -0.79% [0.08]; estimated treatment difference -0.33; 95% CI -0.47 to -0.18; p<0.0001) and more patients achieved a HbA(1c) value of less than 7% (54%vs 43%, respectively; odds ratio 2.02; 95% CI 1.31 to 3.11; p=0.0015). Liraglutide reduced mean fasting plasma glucose more than did exenatide (-1.61 mmol/L [SE 0.20] vs -0.60 mmol/L [0.20]; estimated treatment difference -1.01 mmol/L; 95% CI -1.37 to -0.65; p<0.0001) but postprandial glucose control was less effective after breakfast and dinner. Both drugs promoted similar weight losses (liraglutide -3.24 kg vs exenatide -2.87 kg). Both drugs were well tolerated, but nausea was less persistent (estimated treatment rate ratio 0.448, p<0.0001) and minor hypoglycaemia less frequent with liraglutide than with exenatide (1.93 vs 2.60 events per patient per year; rate ratio 0.55; 95% CI 0.34 to 0.88; p=0.0131; 25.5%vs 33.6% had minor hypoglycaemia). Two patients taking both exenatide and a sulphonylurea had a major hypoglycaemic episode. INTERPRETATION: Liraglutide once a day provided significantly greater improvements in glycaemic control than did exenatide twice a day, and was generally better tolerated. The results suggest that liraglutide might be a treatment option for type 2 diabetes, especially when weight loss and risk of hypoglycaemia are major considerations.
Resumo:
Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [3H]granisetron. Kinetic measurements (kon = 4.0 × 104 M−1 s−1; koff = 0.23 s−1) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.
Resumo:
The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.
Resumo:
Gamma-hydroxybutyrate (GHB) is a GHB-/GABAB-receptor agonist. Reports from GHB abusers indicate euphoric, prosocial, and empathogenic effects of the drug. We measured the effects of GHB on mood, prosocial behavior, social and non-social cognition and assessed potential underlying neuroendocrine mechanisms. GHB (20mg/kg) was tested in 16 healthy males, using a randomized, placebo-controlled, cross-over design. Subjective effects on mood were assessed by visual-analogue-scales and the GHB-Specific-Questionnaire. Prosocial behavior was examined by the Charity Donation Task, the Social Value Orientation test, and the Reciprocity Task. Reaction time, memory, empathy, and theory-of-mind were also tested. Blood plasma levels of GHB, oxytocin, testosterone, progesterone, dehydroepiandrosterone (DHEA), cortisol, aldosterone, and adrenocorticotropic-hormone (ACTH) were determined. GHB showed stimulating and sedating effects, and elicited euphoria, disinhibition, and enhanced vitality. In participants with low prosociality, the drug increased donations and prosocial money distributions. In contrast, social cognitive abilities such as emotion recognition, empathy, and theory-of-mind, and basal cognitive functions were not affected. GHB increased plasma progesterone, while oxytocin and testosterone, cortisol, aldosterone, DHEA, and ACTH levels remained unaffected. GHB has mood-enhancing and prosocial effects without affecting social hormones such as oxytocin and testosterone. These data suggest a potential involvement of GHB-/GABAB-receptors and progesterone in mood and prosocial behavior.
Resumo:
BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.
Resumo:
Cytochrome P450 (CYP) enzymes catalyze the metabolism of both, the analgesic and anesthetic drug ketamine and the α2 -adrenergic receptor-agonist medetomidine that is used for sedation and analgesia. As racemic medetomidine or its active enantiomer dexmedetomidine are often coadministered with racemic or S-ketamine in animals and dexmedetomidine together with S- or racemic ketamine in humans, drug-drug interactions are likely to occur and have to be characterized. Enantioselective CE with highly sulfated γ-cyclodextrin as chiral selector was employed for analyzing in vitro (i) the kinetics of the N-demethylation of ketamine mediated by canine CYP3A12 and (ii) interactions occurring with racemic medetomidine and dexmedetomidine during coincubation with ketamine and canine liver microsomes (CLM), canine CYP3A12, human liver microsomes (HLM), and human CYP3A4. For CYP3A12 without an inhibitor, Michaelis-Menten kinetics was determined for the single enantiomers of ketamine and substrate inhibition kinetics for racemic ketamine. Racemic medetomidine and dexmedetomidine showed an inhibition of the N-demethylation reaction in the studied canine enzyme systems. Racemic medetomidine is the stronger inhibitor for CLM, whereas there is no difference for CYP3A12. For CLM and CYP3A12, the inhibition of dexmedetomidine is stronger for the R- compared to the S-enantiomer of ketamine, a stereoselectivity that is not observed for CYP3A4. Induction is observed at a low dexmedetomidine concentration with CYP3A4 but not with CYP3A12, CLM, and HLM. Based on these results, S-ketamine combined with dexmedetomidine should be the best option for canines. The enantioselective CE assay with highly sulfated γ-cyclodextrin as chiral selector is an effective tool for determining kinetic and inhibition parameters of metabolic pathways.
Resumo:
Somatostatin analogs that activate the somatostatin subtype 2A (sst2A) receptor are used to treat neuroendocrine cancers because they inhibit tumor secretion and growth. Recently, new analogs capable of activating multiple somatostatin receptor subtypes have been developed to increase tumor responsiveness. We tested two such multi-somatostatin analogs for functional selectivity at the sst2A receptor: SOM230, which activates sst1, sst2, sst3, and sst5 receptors, and KE108, which activates all sst receptor subtypes. Both compounds are reported to act as full agonists at their target sst receptors. In sst2A-expressing HEK293 cells, somatostatin inhibited cAMP production, stimulated intracellular calcium accumulation, and increased ERK phosphorylation. SOM230 and KE108 were also potent inhibitors of cAMP accumulation, as expected. However, they antagonized somatostatin stimulation of intracellular calcium and behaved as partial agonists/antagonists for ERK phosphorylation. In pancreatic AR42J cells, which express sst2A receptors endogenously, SOM230 and KE108 were both full agonists for cAMP inhibition. However, although somatostatin increased intracellular calcium and ERK phosphorylation, SOM230 and KE108 again antagonized these effects. Distinct mechanisms were involved in sst2A receptor signaling in AR42J cells; pertussis toxin pretreatment blocked somatostatin inhibition of cAMP accumulation but not the stimulation of intracellular calcium and ERK phosphorylation. Our results demonstrate that SOM230 and KE108 behave as agonists for inhibition of adenylyl cyclase but antagonize somatostatin's actions on intracellular calcium and ERK phosphorylation. Thus, SOM230 and KE108 are not somatostatin mimics, and their functional selectivity at sst2A receptors must be considered in clinical applications where it may have important consequences for therapy.
Resumo:
Receptors for luteinizing hormone-releasing hormone (LHRH) can be utilized for targeted chemotherapy of cytotoxic LHRH analogs. The compound AEZS-108 (previously AN-152) consists of [D-Lys?]LHRH linked to doxorubicin. The objectives of this first study in humans with AESZ-108 were to determine the maximum tolerated dose and to characterize the dose-limiting toxicity, pharmacokinetics, preliminary efficacy, and hormonal effects.