35 resultados para two-centre atomic orbital close coupling method
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
AIMS: It is unclear whether transcatheter aortic valve implantation (TAVI) addresses an unmet clinical need for those currently rejected for surgical aortic valve replacement (SAVR) and whether there is a subgroup of high-risk patients benefiting more from TAVI compared to SAVR. In this two-centre, prospective cohort study, we compared baseline characteristics and 30-day mortality between TAVI and SAVR in consecutive patients undergoing invasive treatment for aortic stenosis. METHODS AND RESULTS: We pre-specified different adjustment methods to examine the effect of TAVI as compared with SAVR on overall 30-day mortality: crude univariable logistic regression analysis, multivariable analysis adjusted for baseline characteristics, analysis adjusted for propensity scores, propensity score matched analysis, and weighted analysis using the inverse probability of treatment (IPT) as weights. A total of 1,122 patients were included in the study: 114 undergoing TAVI and 1,008 patients undergoing SAVR. The crude mortality rate was greater in the TAVI group (9.6% vs. 2.3%) yielding an odds ratio [OR] of 4.57 (95%-CI 2.17-9.65). Compared to patients undergoing SAVR, patients with TAVI were older, more likely to be in NYHA class III and IV, and had a considerably higher logistic EuroSCORE and more comorbid conditions. Adjusted OR depended on the method used to control for confounding and ranged from 0.60 (0.11-3.36) to 7.57 (0.91-63.0). We examined the distribution of propensity scores and found scores to overlap sufficiently only in a narrow range. In patients with sufficient overlap of propensity scores, adjusted OR ranged from 0.35 (0.04-2.72) to 3.17 (0.31 to 31.9). In patients with insufficient overlap, we consistently found increased odds of death associated with TAVI compared with SAVR irrespective of the method used to control confounding, with adjusted OR ranging from 5.88 (0.67-51.8) to 25.7 (0.88-750). Approximately one third of patients undergoing TAVI were found to be potentially eligible for a randomised comparison of TAVI versus SAVR. CONCLUSIONS: Both measured and unmeasured confounding limit the conclusions that can be drawn from observational comparisons of TAVI versus SAVR. Our study indicates that TAVI could be associated with either substantial benefits or harms. Randomised comparisons of TAVI versus SAVR are warranted.
Resumo:
The aim of this study was to compare craniofacial morphology and soft tissue profiles in patients with complete bilateral cleft lip and palate at 9 years of age, treated in two European cleft centres with delayed hard palate closure but different treatment protocols. The cephalometric data of 83 consecutively treated patients were compared (Gothenburg, N=44; Nijmegen, N=39). In total, 18 hard tissue and 10 soft tissue landmarks were digitized by one operator. To determine the intra-observer reliability 20 cephalograms were digitized twice with a monthly interval. Paired t-test, Pearson correlation coefficients and multiple regression models were applied for statistical analysis. Hard and soft tissue data were superimposed using the Generalized Procrustes Analysis. In Nijmegen, the maxilla was protrusive for hard and soft tissue values (P=0.001, P=0.030, respectively) and the maxillary incisors were retroclined (P<0.001), influencing the nasolabial angle, which was increased in comparison with Gothenburg (P=0.004). In conclusion, both centres showed a favourable craniofacial form at 9-10 years of age, although there were significant differences in the maxillary prominence, the incisor inclination and soft tissue cephalometric values. Follow-up of these patients until facial growth has ceased, may elucidate components for outcome improvement.
Resumo:
OBJECTIVE: In ictal scalp electroencephalogram (EEG) the presence of artefacts and the wide ranging patterns of discharges are hurdles to good diagnostic accuracy. Quantitative EEG aids the lateralization and/or localization process of epileptiform activity. METHODS: Twelve patients achieving Engel Class I/IIa outcome following temporal lobe surgery (1 year) were selected with approximately 1-3 ictal EEGs analyzed/patient. The EEG signals were denoised with discrete wavelet transform (DWT), followed by computing the normalized absolute slopes and spatial interpolation of scalp topography associated to detection of local maxima. For localization, the region with the highest normalized absolute slopes at the time when epileptiform activities were registered (>2.5 times standard deviation) was designated as the region of onset. For lateralization, the cerebral hemisphere registering the first appearance of normalized absolute slopes >2.5 times the standard deviation was designated as the side of onset. As comparison, all the EEG episodes were reviewed by two neurologists blinded to clinical information to determine the localization and lateralization of seizure onset by visual analysis. RESULTS: 16/25 seizures (64%) were correctly localized by the visual method and 21/25 seizures (84%) by the quantitative EEG method. 12/25 seizures (48%) were correctly lateralized by the visual method and 23/25 seizures (92%) by the quantitative EEG method. The McNemar test showed p=0.15 for localization and p=0.0026 for lateralization when comparing the two methods. CONCLUSIONS: The quantitative EEG method yielded significantly more seizure episodes that were correctly lateralized and there was a trend towards more correctly localized seizures. SIGNIFICANCE: Coupling DWT with the absolute slope method helps clinicians achieve a better EEG diagnostic accuracy.
Resumo:
Temperate C3-grasslands are of high agricultural and ecological importance in Central Europe. Plant growth and consequently grassland yields depend strongly on water supply during the growing season, which is projected to change in the future. We therefore investigated the effect of summer drought on the water uptake of an intensively managed lowland and an extensively managed sub-alpine grassland in Switzerland. Summer drought was simulated by using transparent shelters. Standing above- and belowground biomass was sampled during three growing seasons. Soil and plant xylem waters were analyzed for oxygen (and hydrogen) stable isotope ratios, and the depths of plant water uptake were estimated by two different approaches: (1) linear interpolation method and (2) Bayesian calibrated mixing model. Relative to the control, aboveground biomass was reduced under drought conditions. In contrast to our expectations, lowland grassland plants subjected to summer drought were more likely (43–68 %) to rely on water in the topsoil (0–10 cm), whereas control plants relied less on the topsoil (4–37 %) and shifted to deeper soil layers (20–35 cm) during the drought period (29–48 %). Sub-alpine grassland plants did not differ significantly in uptake depth between drought and control plots during the drought period. Both approaches yielded similar results and showed that the drought treatment in the two grasslands did not induce a shift to deeper uptake depths, but rather continued or shifted water uptake to even more shallower soil depths. These findings illustrate the importance of shallow soil depths for plant performance under drought conditions.
Resumo:
BACKGROUND CONTEXT: The Neck Disability Index frequently is used to measure outcomes of the neck. The statistical rigor of the Neck Disability Index has been assessed with conflicting outcomes. To date, Confirmatory Factor Analysis of the Neck Disability Index has not been reported for a suitably large population study. Because the Neck Disability Index is not a condition-specific measure of neck function, initial Confirmatory Factor Analysis should consider problematic neck patients as a homogenous group. PURPOSE: We sought to analyze the factor structure of the Neck Disability Index through Confirmatory Factor Analysis in a symptomatic, homogeneous, neck population, with respect to pooled populations and gender subgroups. STUDY DESIGN: This was a secondary analysis of pooled data. PATIENT SAMPLE: A total of 1,278 symptomatic neck patients (67.5% female, median age 41 years), 803 nonspecific and 475 with whiplash-associated disorder. OUTCOME MEASURES: The Neck Disability Index was used to measure outcomes. METHODS: We analyzed pooled baseline data from six independent studies of patients with neck problems who completed Neck Disability Index questionnaires at baseline. The Confirmatory Factor Analysis was considered in three scenarios: the full sample and separate sexes. Models were compared empirically for best fit. RESULTS: Two-factor models have good psychometric properties across both the pooled and sex subgroups. However, according to these analyses, the one-factor solution is preferable from both a statistical perspective and parsimony. The two-factor model was close to significant for the male subgroup (p<.07) where questions separated into constructs of mental function (pain, reading headaches and concentration) and physical function (personal care, lifting, work, driving, sleep, and recreation). CONCLUSIONS: The Neck Disability Index demonstrated a one-factor structure when analyzed by Confirmatory Factor Analysis in a pooled, homogenous sample of neck problem patients. However, a two-factor model did approach significance for male subjects where questions separated into constructs of mental and physical function. Further investigations in different conditions, subgroup and sex-specific populations are warranted.
Resumo:
OBJECTIVES: To determine the clinical performance of a laser fluorescence device (DIAGNOdent pen, KaVo) to discriminate between different occlusal caries depths (D(0)-D(1-4); D(0-2)-D(3,4)) in permanent molars. METHODS: In this prospective, randomized two-centre-study 120 sound/uncavitated carious sites in 120 patients were measured after visual and radiographic caries assessment. In cases of operative intervention (n=86), the lesion depths after caries removal were recorded (reference). In cases of preventive intervention (n=34), the sites were reassessed visually/radiographically after 12 months to verify the status assessed before (reference). The discrimination performance was determined statistically (Mann-Whitney test, Spearman's rho coefficient, and areas under the receiver operating characteristic curves (AUCs)). Sensitivities (SE) and specificities (SP) were plotted as a function of the measured values and cut-off values for the mentioned thresholds suggested. RESULTS: Sound sites (n=13) had significantly minor fluorescence values than carious sites (n=107) (P<0.0001) as had sites with no/enamel caries (n=63) compared to dentinal caries (n=57). The AUCs for the same discriminations were 0.92 and 0.78 (P<0.001). For the D(0)-D(1-4) threshold, a cut-off at a value of 12 (SE: 0.88, SP: 0.85) and for the D(0-2)-D(3,4) threshold at 25 (SE: 0.67, SP: 0.79) can be suggested. A moderate positive correlation between the measurements and the caries depths was calculated (rho=+0.57, P=0.01). CONCLUSION: Within this study, the device's discrimination performance for different caries depths was moderate to very good and it may be recommended as adjunct tool in the diagnosis of occlusal caries.
Resumo:
Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.
Resumo:
OBJECTIVES: Ventilated preterm infants are at high risk for procedural pain exposure. In Switzerland there is a lack of knowledge about the pain management in this highly vulnerable patient population. The aims of this study were to describe the type and frequency of procedures and to determine the amount of analgesia given to this patient group in two Swiss neonatal intensive care units. METHOD: A retrospective cohort study was performed examining procedural exposure and pain management of a convenience sample of 120 ventilated preterm infants (mean age = 29.7 weeks of gestation) during the first 14 days of life after delivery and born between May 1st 2004 and March 31st 2006. RESULTS: The total number of procedures all the infants underwent was 38,626 indicating a mean of 22.9 general procedures performed per child and day. Overall, 75.6% of these procedures are considered to be painful. The most frequently performed procedure is manipulation on the CPAP prongs. Pain measurements were performed four to seven times per day. In all, 99.2% of the infants received either non-pharmacological and/or pharmacological agents and 70.8% received orally administered glucose as pre-emptive analgesia. Morphine was the most commonly used pharmacological agent. DISCUSSION: The number of procedures ventilated preterm infants are exposed to is disconcerting. Iatrogenic pain is a serious problem, particularly in preterm infants of low gestational age. The fact that nurses assessed pain on average four to seven times daily per infant indicates a commitment to exploring a painful state in a highly vulnerable patient population. In general, pharmacological pain management and the administration of oral glucose as a non-pharmacological pain relieving intervention appear to be adequate, but there may be deficiencies, particularly for extremely low birth weight infants born <28 weeks of gestation.
Resumo:
Background Left atrium (LA) dilation and P-wave duration are linked to the amount of endurance training and are risk factors for atrial fibrillation (AF). The aim of this study was to evaluate the impact of LA anatomical and electrical remodeling on its conduit and pump function measured by two-dimensional speckle tracking echocardiography (STE). Method Amateur male runners > 30 years were recruited. Study participants (n = 95) were stratified in 3 groups according to lifetime training hours: low (< 1500 h, n = 33), intermediate (1500 to 4500 h, n = 32) and high training group (> 4500 h, n = 30). Results No differences were found, between the groups, in terms of age, blood pressure, and diastolic function. LA maximal volume (30 ± 5, 33 ± 5 vs. 37 ± 6 ml/m2, p < 0.001), and conduit volume index (9 ± 3, 11 ± 3 vs. 12 ± 3 ml/m2, p < 0.001) increased significantly from the low to the high training group, unlike the STE parameters: pump strain − 15.0 ± 2.8, − 14.7 ± 2.7 vs. − 14.9 ± 2.6%, p = 0.927; conduit strain 23.3 ± 3.9, 22.1 ± 5.3 vs. 23.7 ± 5.7%, p = 0.455. Independent predictors of LA strain conduit function were age, maximal early diastolic velocity of the mitral annulus, heart rate and peak early diastolic filling velocity. The signal-averaged P-wave (135 ± 11, 139 ± 10 vs. 148 ± 14 ms, p < 0.001) increased from the low to the high training group. Four episodes of non-sustained AF were recorded in one runner of the high training group. Conclusion The LA anatomical and electrical remodeling does not have a negative impact on atrial mechanical function. Hence, a possible link between these risk factors for AF and its actual, rare occurrence in this athlete population, could not be uncovered in the present study.
Resumo:
We present a purely physical model to determine cosmogenic production rates for noble gases and radionuclides in micrometeorites (MMs) and interplanetary dust particles (IDPs) by solar cosmic-rays (SCR) and galactic cosmic-rays (GCR) fully considering recoil loss effects. Our model is based on various nuclear model codes to calculate recoil cross sections, recoil ranges, and finally the percentages of the cosmogenic nuclides that are lost as a function of grain size, chemical composition of the grain, and the spectral distribution of the projectiles. The main advantage of our new model compared with earlier approaches is that we consider the entire SCR particle spectrum up to 240 MeV and not only single energy points. Recoil losses for GCR-produced nuclides are assumed to be equal to recoil losses for SCR-produced nuclides. Combining the model predictions with Poynting-Robertson orbital lifetimes, we calculate cosmic-ray exposure ages for recently studied MMs, cosmic spherules, and IDPs. The ages for MMs and the cosmic-spherule are in the range <2.2–233 Ma, which corresponds, according to the Poynting-Robertson drag, to orbital distances in the range 4.0–34 AU. For two IDPs, we determine exposure ages of longer than 900 Ma, which corresponds to orbital distances larger than 150 AU. The orbital distance in the range 4–6 AU for one MM and the cosmic spherule indicate an origin either in the asteroid belt or release from comets coming either from the Kuiper Belt or the Oort Cloud. Three of the studied MMs have orbital distances in the range 23–34 AU, clearly indicating a cometary origin, either from short-period comets from the Kuiper Belt or from the Oort Cloud. The two IDPs have orbital distances of more than 150 AU, indicating an origin from Oort Cloud comets.
Resumo:
We develop further the effective fluid theory of stationary branes. This formalism applies to stationary blackfolds as well as to other equilibrium brane systems at finite temperature. The effective theory is described by a Lagrangian containing the information about the elastic dynamics of the brane embedding as well as the hydrodynamics of the effective fluid living on the brane. The Lagrangian is corrected order-by-order in a derivative expansion, where we take into account the dipole moment of the brane which encompasses finite-thickness corrections, including transverse spin. We describe how to extract the thermodynamics from the Lagrangian and we obtain constraints on the higher-derivative terms with one and two derivatives. These constraints follow by comparing the brane thermodynamics with the conserved currents associated with background Killing vector fields. In particular, we fix uniquely the one- and two-derivative terms describing the coupling of the transverse spin to the background space-time. Finally, we apply our formalism to two blackfold examples, the black tori and charged black rings and compare the latter to a numerically generated solution.
Resumo:
Vitrectomy is a standard ophthalmic procedure to remove the vitreous body from the eye. The biomechanics of the vitreous affects its duration (by changing the removal rate) and the mechanical forces transmitted via the vitreous on the surrounding tissues during the procedure. Biomechanical characterization of the vitreous is essential for optimizing the design and control of instruments that operate within the vitreous for improved precision, safety, and efficacy. The measurements are carried out using a magnetic microprobe inserted into the vitreous, a method known as magnetic microrheology. The location of the probe is tracked by a microscope/camera while magnetic forces are exerted wirelessly by applied magnetic fields. In this work, in vitro artificial vitreous, ex vivo human vitreous and ex vivo porcine vitreous were characterized. In addition, in vivo rabbit measurements were performed using a suturelessly injected probe. Measurements indicate that viscoelasticity parameters of the ex vivo human vitreous are an order of magnitude different from those of the ex vivo porcine vitreous. The in vivo intra-operative measurements show typical viscoelastic behavior of the vitreous with a lower compliance than the ex vivo measurements. The results of the magnetic microrheology measurements were validated with those obtained by a standard atomic force microscopy (AFM) method and in vitro artificial vitreous. This method allows minimally-invasive characterization of localized mechanical properties of the vitreous in vitro, ex vivo, and in vivo. A better understanding of the characteristics of the vitreous can lead to improvements in treatments concerning vitreal manipulation such as vitrectomy.
Resumo:
The ribosome is a highly conserved cellular complex and constitutes the center of protein biosynthesis. As the ribosome consists to about 2/3 of ribosomal RNA (rRNA), the rRNA is involved in most steps of translation. In order to investigate the role of some defined rRNA residues in different aspects of translation we use the atomic mutagenesis approach. This method allows the site-specific incorporation of unnatural nucleosides into the rRNA in the context of the complete 70S from Thermus aquaticus, and thereby exceeds the possibilities of conventional mutagenesis. We first studied ribosome-stimulated EF-G GTP hydrolysis. Here, we could show that the non-bridging phosphate oxygen of A2662, which is part of the Sarcin-Ricin-Loop, is required for EF-G GTPase activation by the ribosome. EF-G GTPase is a crucial step for tRNA translocation from the A- to the P-site, and from the P- to the E-site, respectively. We furthermore used the atomic mutagenesis approach to more precisely characterize the 23S rRNA functional groups involved in E-site tRNA binding. While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Resumo:
The excitonic splitting between the S-1 and S-2 electronic states of the doubly hydrogen-bonded dimer 2-pyridone center dot 6-methyl-2-pyridone (2PY center dot 6M2PY) is studied in a supersonic jet, applying two-color resonant two-photon ionization (2C-R2PI), UV-UV depletion, and dispersed fluorescence spectroscopies. In contrast to the C-2h symmetric (2-pyridone) 2 homodimer, in which the S-1 <- S-0 transition is symmetry-forbidden but the S-2 <- S-0 transition is allowed, the symmetry-breaking by the additional methyl group in 2PY center dot 6M2PY leads to the appearance of both the S-1 and S-2 origins, which are separated by Delta(exp) = 154 cm(-1). When combined with the separation of the S-1 <- S-0 excitations of 6M2PY and 2PY, which is delta = 102 cm(-1), one obtains an S-1/S-2 exciton coupling matrix element of V-AB, el = 57 cm(-1) in a Frenkel-Davydov exciton model. The vibronic couplings in the S-1/S-2 <- S-0 spectrum of 2PY center dot 6M2PY are treated by the Fulton-Gouterman single-mode model. We consider independent couplings to the intramolecular 6a' vibration and to the intermolecular sigma' stretch, and obtain a semi-quantitative fit to the observed spectrum. The dimensionless excitonic couplings are C(6a') = 0.15 and C(sigma') = 0.05, which places this dimer in the weak-coupling limit. However, the S-1/S-2 state exciton splittings Delta(calc) calculated by the configuration interaction singles method (CIS), time-dependent Hartree-Fock (TD-HF), and approximate second-order coupled-cluster method (CC2) are between 1100 and 1450 cm(-1), or seven to nine times larger than observed. These huge errors result from the neglect of the coupling to the optically active intra-and intermolecular vibrations of the dimer, which lead to vibronic quenching of the purely electronic excitonic splitting. For 2PY center dot 6M2PY the electronic splitting is quenched by a factor of similar to 30 (i.e., the vibronic quenching factor is Gamma(exp) = 0.035), which brings the calculated splittings into close agreement with the experimentally observed value. The 2C-R2PI and fluorescence spectra of the tautomeric species 2-hydroxypyridine center dot 6-methyl-2-pyridone (2HP center dot 6M2PY) are also observed and assigned. (C) 2011 American Institute of Physics.