70 resultados para tumor imaging
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The synthesis, radiolabeling, and initial evaluation of new silicon-fluoride acceptor (SiFA) derivatized octreotate derivatives is reported. So far, the main drawback of the SiFA technology for the synthesis of PET-radiotracers is the high lipophilicity of the resulting radiopharmaceutical. Consequently, we synthesized new SiFA-octreotate analogues derivatized with Fmoc-NH-PEG-COOH, Fmoc-Asn(Ac?AcNH-?-Glc)-OH, and SiFA-aldehyde (SIFA-A). The substances could be labeled in high yields (38 ± 4%) and specific activities between 29 and 56 GBq/?mol in short synthesis times of less than 30 min (e.o.b.). The in vitro evaluation of the synthesized conjugates displayed a sst2 receptor affinity (IC?? = 3.3 ± 0.3 nM) comparable to that of somatostatin-28. As a measure of lipophilicity of the conjugates, the log P(ow) was determined and found to be 0.96 for SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate and 1.23 for SiFA-Asn(AcNH-?-Glc)-Tyr³-octreotate, which is considerably lower than for SiFA-Tyr³-octreotate (log P(ow) = 1.59). The initial in vivo evaluation of [¹?F]SiFA-Asn(AcNH-?-Glc)-PEG-Tyr³-octreotate revealed a significant uptake of radiotracer in the tumor tissue of AR42J tumor-bearing nude mice of 7.7% ID/g tissue weight. These results show that the high lipophilicity of the SiFA moiety can be compensated by applying hydrophilic moieties. Using this approach, a tumor-affine SiFA-containing peptide could successfully be used for receptor imaging for the first time in this proof of concept study.
Resumo:
A series of Gly-neurotensin(8-13) analogues modified at the N-terminus by acyclic tetraamines (Demotensin 1-4) were obtained by solid-phase peptide synthesis techniques. Strategic replacement of amino acids and/or reduction of sensitive peptide bonds were performed to enhance conjugate resistance against proteolytic enzymes. During 99mTc-labeling, single species radiopeptides, [99mTc]Demotensin 1-4, were easily obtained in high yields and typical specific activities of 1 Ci/micromol. Peptide conjugates displayed a high affinity binding to the human neurotensin subtype 1 receptor (NTS1-R) expressed in colon adenocarcinoma HT-29 or WiDr cells and/or in human tumor sections. [99mTc]Demotensin 1-4 internalized very rapidly in HT-29 or WiDr cells by a NTS1-R-mediated process. [99mTc]Demotensin 3 and 4, which remained stable during 1 h incubation in murine plasma, were selectively studied in nude mice bearing human HT-29 and WiDr xenografts. After injection, [99mTc]Demotensin 3 and 4 effectively and specifically localized in the experimental tumors and were rapidly excreted via the kidneys into the urine, exhibiting overall biodistribution patterns favorable for NTS1-R-targeted tumor imaging in man.
Resumo:
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% ± 2.2% and 17.0% ± 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.
Resumo:
6-(18)F-fluoro-l-dopa ((18)F-FDOPA) measured with PET as a biomarker of amino acid uptake has been investigated in brain tumor imaging. The aims of the current study were to determine whether the degree of (18)F-FDOPA uptake in brain tumors predicted tumor grade and was associated with tumor proliferative activity in newly diagnosed and recurrent gliomas.
Resumo:
In diagnostic neuroradiology as well as in radiation oncology and neurosurgery, there is an increasing demand for accurate segmentation of tumor-bearing brain images. Atlas-based segmentation is an appealing automatic technique thanks to its robustness and versatility. However, atlas-based segmentation of tumor-bearing brain images is challenging due to the confounding effects of the tumor in the patient image. In this article, we provide a brief background on brain tumor imaging and introduce the clinical perspective, before we categorize and review the state of the art in the current literature on atlas-based segmentation for tumor-bearing brain images. We also present selected methods and results from our own research in more detail. Finally, we conclude with a short summary and look at new developments in the field, including requirements for future routine clinical use.
Resumo:
BACKGROUND/AIMS: Gut hormone receptors are over-expressed in human cancer and allow receptor-targeted tumor imaging and therapy. A novel promising receptor for these purposes is the secretin receptor. The secretin receptor expression was investigated in the human liver because the liver is a physiological secretin target and because novel diagnostic and treatment modalities are needed for liver cancer. METHODS: Nineteen normal livers, 10 cirrhotic livers, 35 cholangiocarcinomas, and 45 hepatocellular carcinomas were investigated for secretin receptor expression by in vitro receptor autoradiography using (125)I-[Tyr(10)] rat secretin and, in selected cases, for secretin receptor mRNA by RT-PCR. RESULTS: Secretin receptors were present in normal bile ducts and ductules, but not in hepatocytes. A significant receptor up-regulation was observed in ductular reaction in liver cirrhosis. Twenty-two (63%) cholangiocarcinomas were positive for secretin receptors, while hepatocellular carcinomas were negative. RT-PCR revealed wild-type receptor mRNA in the non-neoplastic liver, wild-type and spliced variant receptor mRNAs in cholangiocarcinomas found receptor positive in autoradiography experiments, and no receptor transcripts in autoradiographically negative cholangiocarcinomas. CONCLUSIONS: The expression of secretin receptors in the biliary tract is the molecular basis of the secretin-induced bicarbonate-rich choleresis in man. The high receptor expression in cholangiocarcinomas may be used for in vivo secretin receptor-targeting of these tumors and for the differential diagnosis with hepatocellular carcinoma.
Resumo:
Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.
Resumo:
Gut hormone receptors can be over-expressed in several human cancers and represent the basis for receptor-targeted tumor imaging and therapy. A promising receptor for such clinical applications is the cholecystokinin receptor. Cholecystokinin receptors are expressed in numerous neuroendocrine tumors, in particular medullary thyroid carcinomas and neuroendocrine gut tumors, as well as in stromal tumors. Moreover, several radiolabeled CCK or gastrin analogs have been developed allowing to detect these tumors and their metastases in patients using in vivo cholecystokinin receptor scintigraphy, proving the feasibility of targeting CCK receptors in human tumors in vivo.
Resumo:
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Resumo:
The clinical and neuro-endocrine data of seven young male patients with suprasellar germinomas seen between 1984 and 1992 are reported. The most common initial symptom was 'idiopathic' central diabetes insipidus (DI), which occurred in all seven patients. The time interval between the appearance of this first clinical sign and the definitive diagnosis of a suprasellar germinoma ranged from 3 to 66 months. Raised prolactin levels and growth hormone deficiency were indicators of a process located in the hypothalamic-pituitary region. An increased beta-HCG level in the serum or the CSF confirmed the diagnostic suspicion of a germinoma and was helpful as a tumor marker in follow-up. Neuro-radiologic studies (CT or MRI) were also disappointing in the early stage when patients presented only with DI. Later on, as patients developed additional symptoms or signs related to the tumor, imaging studies were positive. Given the variable rate of tumor progression, the nonspecific early signs of hypothalamic-pituitary dysfunction (DI) as well as the often negative early imaging studies, the diagnosis of suprasellar germinoma is difficult but should always be considered in the presence of so-called 'idiopathic' central DI. Repeated brain MRIs are mandatory in young patients with idiopathic DI in order not to miss an underlying suprasellar germinoma.
Resumo:
The present report describes the synthesis and biological evaluation of a molecular imaging platform based on gold nanoparticles directly labeled with indium-111. The direct labeling approach facilitated radiolabeling with high activities while maintaining excellent stability within the biological environment. The resulting imaging platform exhibited low interference of the radiolabel with targeting molecules, which is highly desirable for in-vivo probe tracking and molecular targeted tumor imaging. The indium-111 labeled gold nanoparticles were synthesized using a simple procedure that allowed stable labeling of the nanoparticle core with various indium-111 activities. Subsequent surface modification of the particle cores with RGD-based ligands at various densities allowed for molecular targeting of the αvß3 integrin in-vitro and for molecular targeted imaging in human melanoma and glioblastoma models in-vivo. The results demonstrate the vast potential of direct labeling with radioisotopes for tracking gold nanoparticles within biological systems.
Resumo:
Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and <3% ID/g, respectively, with values of <0.5% ID/g during receptor blockade). In conclusion, the somatostatin mimic [111In-DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.
Resumo:
In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, n = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (n = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site.
Resumo:
To assess the effect of tumor size and tumor-to-liver contrast of simulated hypovascular liver tumors on the diagnostic accuracy of hepatic computed tomography (CT).