3 resultados para tuberculostatic prodrugs
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.
Resumo:
A series of epothilone B and D analogues bearing isomeric quinoline or functionalized benzimidazole side chains has been prepared by chemical synthesis in a highly convergent manner. All analogues have been found to interact with the tubulin/microtubule system and to inhibit human cancer cell proliferation in vitro, albeit with different potencies (IC(50) values between 1 and 150 nM). The affinity of quinoline-based epothilone B and D analogues for stabilized microtubules clearly depends on the position of the N-atom in the quinoline system, while the induction of tubulin polymerization in vitro appears to be less sensitive to N-positioning. The potent inhibition of human cancer cell growth by epothilone analogues bearing functionalized benzimidazole side chains suggests that these systems might be conjugated with tumor-targeting moieties to form tumor-targeted prodrugs.
Resumo:
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.