3 resultados para tropical environments

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical cyclogenesis is generally considered to occur in regions devoid of baroclinic structures; however, an appreciable number of tropical cyclones (TCs) form in baroclinic environments each year. A global climatology of these baroclinically influenced TC developments is presented in this study. An objective classification strategy is developed that focuses on the characteristics of the environmental state rather than on properties of the vortex, thus allowing for a pointwise “development pathway” classification of reanalysis data. The resulting climatology shows that variability within basins arises primarily as a result of local surface thermal contrasts and the positions of time-mean features on the subtropical tropopause. The pathway analyses are sampled to generate a global climatology of 1948–2010 TC developments classified by baroclinic influence: nonbaroclinic (70%), low-level baroclinic (9%), trough induced (5%), weak tropical transition (11%), and strong tropical transition (5%). All basins other than the North Atlantic are dominated by nonbaroclinic events; however, there is extensive interbasin variability in secondary development pathways. Within each basin, subregions and time periods are identified in which the relative importance of the development pathways also differs. The efficiency of tropical cyclogenesis is found to be highly dependent on development pathway. The peak efficiency defined in the classification subspace straddles the nonbaroclinic/trough-induced boundary, suggesting that the optimal environment for TC development includes a baroclinic contribution from an upper-level disturbance. By assessing the global distribution of baroclinically influenced TC formations, this study identifies regions and pathways whose further study could yield improvements in our understanding of this important subset of TC developments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures.