130 resultados para trigeminal nerve
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE: Multiple studies have proved that microvascular decompression (MVD) is the treatment of choice in cases of medically refractory trigeminal neuralgia (TN). In the elderly, however, the surgical risks related to MVD are assumed to be unacceptably high and various alternative therapies have been proposed. We evaluated the outcomes of MVD in patients aged older than 65 years of age and compared them with the outcomes in a matched group of younger patients. The focus was on procedure-related morbidity rate and long-term outcome. METHODS: This was a retrospective study of 112 patients with TN operated on consecutively over 22 years. The main outcome measures were immediate and long-term postoperative pain relief and neurological status, especially function of trigeminal, facial, and cochlear nerves, as well as surgical complications. A questionnaire was used to assess long-term outcome: pain relief, duration of a pain-free period, need for pain medications, time to recurrence, pain severity, and need for additional treatment. RESULTS: The mean age was 70.35 years. The second and third branches of the trigeminal nerve were most frequently affected (37.3%). The mean follow-up period was 90 months (range, 48-295 months). Seventy-five percent of the patients were completely pain free, 11% were never pain free, and 14% experienced recurrences. No statistically significant differences existed in the outcome between the younger and older patient groups. Postoperative morbidity included trigeminal hypesthesia in 6.25%, hypacusis in 5.4%, and complete hearing loss, vertigo, and partial facial nerve palsy in 0.89% each. Cerebrospinal fluid leak and meningitis occurred in 1 patient each. There were no mortalities in both groups. CONCLUSION: MVD for TN is a safe procedure even in the elderly. The risk of serious morbidity or mortality is similar to that in younger patients. Furthermore, no significant differences in short- and long-term outcome were found. Thus, MVD is the treatment of choice in patients with medically refractory TN, unless their general condition prohibits it.
Resumo:
Central nervous system involvement is a rare and serious complication of Behçet's disease (BD). Herein, we describe a patient with an atypical central lesion, who experienced progressive hypesthesia of the right arm and sensory loss of the trigeminal nerve together with intense headache. A repeated biopsy was necessary to conclusively establish the diagnosis of BD. Therapy with infusions of infliximab led to a remarkable full remission. TNFα-blocking therapy was successfully replaced by azathioprine. The present well-illustrated case demonstrates the difficulty of establishing the diagnosis of BD with central nervous system involvement, the dramatic benefit of short given TNF-α-blocking agent, and the long-term remission with azathioprin.
Resumo:
Listeriosis is a serious food-borne disease with increasing frequency in humans and ruminants. Despite the facts that in both hosts, listeriosis can occur as rhombencephalitis and ruminants are a reservoir of Listeria monocytogenes (LM) strains pathogenic for humans, little work has been done on the pathogenesis in ruminants. This study investigates the neuropathogenesis of listeric encephalitis in over 200 natural cases in cattle, sheep and goats by analyzing anatomical distribution, severity, bacterial load and temporal evolution of the lesions. Our results suggest that LM gains access to the brainstem of all three species via axonal migration not only along the trigeminal nerve, but also along other nerves. The ensuing encephalitis does not remain restricted to the brainstem. Rather, LM spreads further from the brainstem into rostral brain regions likely by intracerebral axonal migration. Significant differences in severity of the lesions and bacterial load were found between cattle and small ruminants, which may be caused by species-specific properties of antibacterial immune responses. As histopathological lesions of human rhombencephalitis caused by LM strongly resemble those of ruminants, the disease likely has a similar pathogenesis in both hosts.
Resumo:
Electrically induced reflexes can be used to investigate the physiology and pathophysiology of the trigeminal system in humans. Similarly, the assessment of the trigemino-cervical (TCR) and blink reflexes (BR) may provide a new diagnostic tool in horses. The aim of this study was to evoke nociceptive trigeminal reflexes and describe the electrophysiological characteristics in non-sedated horses. The infraorbital (ION) and supraorbital nerves (SON) were stimulated transcutaneously in 10 adult Warmblood horses in separate sessions using train-of-five electrical pulses. The current was increased gradually until the TCR threshold was found. The stimulus-response curve of the TCR was evaluated. At the same time as TCR, the BR response was also assessed. Surface electromyographic (EMG) responses were recorded from the orbicularis oculi, splenius and cleidomastoideus muscles. Latency, duration, amplitude of the reflexes and behavioural responses were analysed. Noxious electrical stimulation of the ION or SON evoked reflex EMG responses, with similar features regardless of the nerve that had been stimulated. Stimulations of increasing intensity elicited reflexes of increasing amplitude and decreasing latency, accompanied by stronger behavioural reactions, therefore confirming the nociceptive nature of the TCR. These findings provide a reference for the assessment of dysfunction of the equine trigeminal system.
Resumo:
In this exploratory study we evaluated sensitivity and target specificity of sinuvertebral nerve block (SVNB) for the diagnosis of lumbar diskogenic pain. Diskography has been the diagnostic gold standard. Fifteen patients with positive diskography underwent SVNB via interlaminar approach to the posterior aspect of the disk. Success was defined as > or = 80% pain reduction or excellent relief of physical restrictions after the block. The sensitivity was 73.3% (95% CI: 50.9%-95.7%). The target specificity was 40% (15.2%-64.8%). The results indicate that SVNB cannot yet replace diskography but encourage future studies to improve its target specificity.
Resumo:
BACKGROUND: Local anaesthetic blocks of the greater occipital nerve (GON) are frequently performed in different types of headache, but no selective approaches exist. Our cadaver study compares the sonographic visibility of the nerve and the accuracy and specificity of ultrasound-guided injections at two different sites. METHODS: After sonographic measurements in 10 embalmed cadavers, 20 ultrasound-guided injections of the GON were performed with 0.1 ml of dye at the classical site (superior nuchal line) followed by 20 at a newly described site more proximal (C2, superficial to the obliquus capitis inferior muscle). The spread of dye and coloration of nerve were evaluated by dissection. RESULTS: The median sonographic diameter of the GON was 4.2 x 1.4 mm at the classical and 4.0 x 1.8 mm at the new site. The nerves were found at a median depth of 8 and 17.5 mm, respectively. In 16 of 20 in the classical approach and 20 of 20 in the new approach, the nerve was successfully coloured with the dye. This corresponds to a block success rate of 80% (95% confidence interval: 58-93%) vs 100% (95% confidence interval: 86-100%), which is statistically significant (McNemar's test, P=0.002). CONCLUSIONS: Our findings confirm that the GON can be visualized using ultrasound both at the level of the superior nuchal line and C2. This newly described approach superficial to the obliquus capitis inferior muscle has a higher success rate and should allow a more precise blockade of the nerve.
Resumo:
Retrospective case-referent study.
Resumo:
We report the longterm follow-up of children with optic nerve avulsion (ONA) caused by traumatic events. The remarkable differences in courses and outcomes may elucidate the spectrum of ONA-associated symptoms and injuries.
Resumo:
Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.
Resumo:
This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various amplitudes recorded in the same experimental session. Detailed comparisons were made between the single units and compound potentials that were 40% or 5% of maximal amplitude, the former because this is the compound potential size used in most threshold tracking studies of axonal excitability, the latter because this is the compound potential most likely to be composed entirely of motor axons with low thresholds to electrical recruitment. Measurements were made of the strength-duration relationship, threshold electrotonus, current-voltage relationship, recovery cycle and latent addition. The findings did not support a difference in I(NaP). Instead they pointed to greater activity of the hyperpolarization-activated inwardly rectifying current (I(h)) as the basis for low threshold to electrical recruitment in human motor axons. Computer modelling confirmed this finding, with a doubling of the hyperpolarization-activated conductance proving the best single parameter adjustment to fit the experimental data. We suggest that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel(s) expressed on human motor axons may be active at rest and contribute to resting membrane potential.
Resumo:
Various factors, including maturity, have been shown to influence peripheral nerve excitability measures, but little is known about differences in these properties between axons with different stimulation thresholds. Multiple nerve excitability tests were performed on the caudal motor axons of immature and mature female rats, recording from tail muscles at three target compound muscle action potential (CMAP) levels: 10%, 40% ("standard" level), and 60% of the maximum CMAP amplitude. Compared to lower target levels, axons at high target levels have the following characteristics: lower strength-duration time constant, less threshold reduction during depolarizing currents and greater threshold increase to hyperpolarizing currents, most notably to long hyperpolarizing currents in mature rats. Threshold-dependent effects on peripheral nerve excitability properties depend on the maturation stage, especially inward rectification (Ih), which becomes inversely related to threshold level. Performing nerve excitability tests at different target levels is useful in understanding the variation in membrane properties between different axons within a nerve. Because of the threshold effects on nerve excitability and the possibility of increased variability between axons and altered electric recruitment order in disease conditions, excitability parameters measured only at the "standard" target level should be interpreted with caution, especially the responses to hyperpolarizing currents.
Resumo:
The aim of this study was to investigate the histomorphological changes of the infraorbital nerve of rats treated with ampicillin.
Resumo:
The aim of this work is to assess the repeatability of spectral-domain-OCT (SD-OCT) retinal nerve fiber layer thickness (RNFL) thickness measurements in a non-glaucoma group and patients with glaucoma and to compare these results to conventional time-domain-OCT (TD-OCT).
Resumo:
In this study we sought to evaluate the reproducibility of sensory nerve conduction studies (NCS) using ultrasound-guided needle positioning (USNP).