3 resultados para transmission blocking immunity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the impact of screening programmes in reducing the prevalence of Chlamydia trachomatis, mathematical and computational models are used as a guideline for decision support. Unfortunately, large uncertainties exist about the parameters that determine the transmission dynamics of C. trachomatis. Here, we use a SEIRS (susceptible-exposed-infected-recovered-susceptible) model to critically analyze the turnover of C. trachomatis in a population and the impact of a screening programme. We perform a sensitivity analysis on the most important steps during an infection with C. trachomatis. Varying the fraction of the infections becoming symptomatic as well as the duration of the symptomatic period within the range of previously used parameter estimates has little effect on the transmission dynamics. However, uncertainties in the duration of temporary immunity and the asymptomatic period can result in large differences in the predicted impact of a screening programme. We therefore analyze previously published data on the persistence of asymptomatic C. trachomatis infection in women and estimate the mean duration of the asymptomatic period to be longer than anticipated so far, namely 433 days (95% CI: 420-447 days). Our study shows that a longer duration of the asymptomatic period results in a more pronounced impact of a screening programme. However, due to the slower turnover of the infection, a substantial reduction in prevalence can only be achieved after screening for several years or decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.