24 resultados para transfer pricing methods
em BORIS: Bern Open Repository and Information System - Berna - Suiça
In vivo electroporation and ubiquitin promoter--a protocol for sustained gene expression in the lung
Resumo:
BACKGROUND: Gene therapy applications require safe and efficient methods for gene transfer. Present methods are restricted by low efficiency and short duration of transgene expression. In vivo electroporation, a physical method of gene transfer, has evolved as an efficient method in recent years. We present a protocol involving electroporation combined with a long-acting promoter system for gene transfer to the lung. METHODS: The study was designed to evaluate electroporation-mediated gene transfer to the lung and to analyze a promoter system that allows prolonged transgene expression. A volume of 250 microl of purified plasmid DNA suspended in water was instilled into the left lung of anesthetized rats, followed by left thoracotomy and electroporation of the exposed left lung. Plasmids pCiKlux and pUblux expressing luciferase under the control of the cytomegalovirus immediate-early promoter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) promoter were used. Electroporation conditions were optimized with four pulses (200 V/cm, 20 ms at 1 Hz) using flat plate electrodes. The animals were sacrificed at different time points up to day 40, after gene transfer. Gene expression was detected and quantified by bioluminescent reporter imaging (BLI) and relative light units per milligram of protein (RLU/mg) was measured by luminometer for p.Pyralis luciferase and immunohistochemistry, using an anti-luciferase antibody. RESULTS: Gene expression with the CMV-IEPE promoter was highest 24 h after gene transfer (2932+/-249.4 relative light units (RLU)/mg of total lung protein) and returned to baseline by day 3 (382+/-318 RLU/mg of total lung protein); at day 5 no expression was detected, whereas gene expression under the Ubc promoter was detected up to day 40 (1989+/-710 RLU/mg of total lung protein) with a peak at day 20 (2821+/-2092 RLU/mg of total lung protein). Arterial blood gas (PaO2), histological assessment and cytokine measurements showed no significant toxicity neither at day 1 nor at day 40. CONCLUSIONS: These results provide evidence that in vivo electroporation is a safe and effective tool for non-viral gene delivery to the lungs. If this method is used in combination with a long-acting promoter system, sustained transgene expression can be achieved.
Resumo:
By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.
Resumo:
Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one-atom-at-a-time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes (t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ∼1 mbar atmosphere in TASCA from the RTC kept at ∼1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.
Resumo:
Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.
Resumo:
BACKGROUND: Mild perioperative hypothermia increases the risk of several severe complications. Perioperative patient warming to preserve normothermia has thus become routine, with forced-air warming being used most often. In previous studies, various resistive warming systems have shown mixed results in comparison with forced-air. Recently, a polymer-based resistive patient warming system has been developed. We compared the efficacy of a standard forced-air warming system with the resistive polymer system in volunteers. METHODS: Eight healthy volunteers participated, each on two separate study days. Unanesthetized volunteers were cooled to a core temperature (tympanic membrane) of 34 degrees C by application of forced-air at 10 degrees C and a circulating-water mattress at 4 degrees C. Meperidine and buspirone were administered to prevent shivering. In a randomly designated order, volunteers were then rewarmed (until their core temperatures reached 36 degrees C) with one of the following active warming systems: (1) forced-air warming (Bair Hugger warming cover #300, blower #750, Arizant, Eden Prairie, MN); or (2) polymer fiber resistive warming (HotDog whole body blanket, HotDog standard controller, Augustine Biomedical, Eden Prairie, MN). The alternate system was used on the second study day. Metabolic heat production, cutaneous heat loss, and core temperature were measured. RESULTS: Metabolic heat production and cutaneous heat loss were similar with each system. After a 30-min delay, core temperature increased nearly linearly by 0.98 (95% confidence interval 0.91-1.04) degrees C/h with forced-air and by 0.92 (0.85-1.00) degrees C/h with resistive heating (P = 0.4). CONCLUSIONS: Heating efficacy and core rewarming rates were similar with full-body forced-air and full-body resistive polymer heating in healthy volunteers.
Resumo:
PURPOSE: To use magnetization transfer (MT) imaging in the visualization of healthy articular cartilage and cartilage repair tissue after different cartilage repair procedures, and to assess global as well as zonal values and compare the results to T2-relaxation. MATERIALS AND METHODS: Thirty-four patients (17 after microfracture [MFX] and 17 after matrix-associated autologous cartilage transplantation [MACT]) were examined with 3T MRI. The MT ratio (MTR) was calculated from measurements with and without MT contrast. T2-values were evaluated using a multiecho, spin-echo approach. Global (full thickness of cartilage) and zonal (deep and superficial aspect) region-of-interest assessment of cartilage repair tissue and normal-appearing cartilage was performed. RESULTS: In patients after MFX and MACT, the global MTR of cartilage repair tissue was significantly lower compared to healthy cartilage. In contrast, using T2, cartilage repair tissue showed significantly lower T2 values only after MFX, whereas after MACT, global T2 values were comparable to healthy cartilage. For zonal evaluation, MTR and T2 showed a significant stratification within healthy cartilage, and T2 additionally within cartilage repair tissue after MACT. CONCLUSION: MT imaging is capable and sensitive in the detection of differences between healthy cartilage and areas of cartilage repair and might be an additional tool in biochemical cartilage imaging. For both MTR and T2 mapping, zonal assessment is desirable.
Resumo:
BACKGROUND: Hepatic steatosis may promote progression of chronic hepatitis C (CHC). Microsomal triglyceride transfer protein (MTP) is required for assembly and secretion of ApoB lipoprotein and is implicated in hepatitis C virus (HCV)-related steatosis. The MTP -493G/T polymorphism may promote liver fat accumulation, but its role in HCV-related steatosis is still unclear. METHODS: Two hundred ninety-eight CHC patients were studied and genotyped for MTP -493G/T variants. Hepatic MTP mRNA expression and activity were determined in a subgroup. RESULTS: Patients with grades 2/3 steatosis were older, had a higher body mass index (BMI), more advanced fibrosis and lower MTP mRNA expression and carried more often HCV genotype 3 and the MTP T allele. Age, BMI, HCV-3 and MTP T allele [odds ratio (OR) 2.05; 95% confidence interval (CI) 1.2-3.53; P=0.009] were independent risk factors for steatosis grades 2/3, and in HCV genotype non-3 patients, the MTP T allele was the strongest predictor for steatosis grade 2/3 (OR 2.17; 95% CI 1.22-3.86; P=0.008). Moreover, TT carriers had higher high-density lipoprotein (65.6+/-14.6 vs 56.1+/-16.2 mg/dl; P=0.003) and apolipoprotein AI (1.80+/-0.3 vs 1.60+/-0.3 g/L; P=0.005) levels than G allele carriers. CONCLUSIONS: Chronic hepatitis C patients with the MTP -493T allele reveal higher grades of steatosis, indicating a relevant contribution to liver fat accumulation, particularly in HCV non-3 patients.
Resumo:
High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments
Resumo:
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.
Resumo:
Software-maintenance offshore outsourcing (SMOO) projects have been plagued by tedious knowledge transfer during the service transition to the vendor. Vendor engineers risk being over-strained by the high amounts of novel information, resulting in extra costs that may erode the business case behind offshoring. Although stakeholders may desire to avoid these extra costs by implementing appropriate knowledge transfer practices, little is known on how effective knowledge transfer can be designed and managed in light of the high cognitive loads in SMOO transitions. The dissertation at hand addresses this research gap by presenting and integrating four studies. The studies draw on cognitive load theory, attributional theory, and control theory and they apply qualitative, quantitative, and simulation methods to qualitative data from eight in-depth longitudinal cases. The results suggest that the choice of appropriate learning tasks may be more central to knowledge transfer than the amount of information shared with vendor engineers. Moreover, because vendor staff may not be able to and not dare to effectively self-manage learn-ing tasks during early transition, client-driven controls may be initially required and subsequently faded out. Collectively, the results call for people-based rather than codification-based knowledge management strategies in at least moderately specific and complex software environments.
Resumo:
OBJECTIVE: In recent years research investigating various health benefits of Taiji practice has markedly increased. Despite this growing scientific interest, essential questions such as to what extent a Taiji course may exert noticeable effects in participants’ everyday life, what these effects are, and how and where potential transfer effects occur, have hardly been considered. The aim of our study was to explore transfer effects from a Taiji course into participants’ daily lives. METHODS: We conducted a longitudinal observational study in 45 healthy participants at the end of their three-month Taiji beginner course (tp1) and at two months (tp2) as well as one year after course completion (tp3). Participants were asked to report their Taiji practice behavior at all time points, as well as to rate and describe perceived transfer effects of Taiji course contents on their daily life at tp1 and tp3. RESULTS: Transfer effects were reported by 91.1% of all respondents after course completion (tp1) and persisted in 73.3% at the one-year follow-up assessment (tp3), counting “increase of self-efficacy”, “improvement of stress management”, and “increase of body awareness” as the most frequently mentioned effects. Transfer effects predominantly occurred in participants’ work and social environments, as well as during everyday activities in public areas. While selfreliant Taiji practice frequency significantly decreased from 82.2% at tp1 to 55.6% at tp3 (P < 0.001), the magnitude of self-reported transfer effects did not (P = 0.35). As explorative analyses revealed, regular Taiji course attendance was highly correlated with stronger transfer effects at tp1 (r = 0.51; P < 0.001) and tp3 (r = 0.35; P = 0.020). Participants reporting high self-reliant Taiji practice frequency at tp2 were likely to maintain a regular practice routine at tp3 (r = 0.42; P < 0.004), whereas self-reliant practice frequency and transfer effects at tp1 were positively correlated with self-reliant practice frequency at tp3 on a trend level (r < 0.27; P > 0.08). CONCLUSION: Our data underline the importance of regular course participation for pronounced and long lasting transfer effects into participants’ everyday life. We discuss that several context and process-related aspects of a Taiji intervention are potentially relevant factors for enhancement of transfer effect.
Resumo:
A compact and planar donor–acceptor molecule 1 comprising tetrathiafulvalene (TTF) and benzothiadiazole (BTD) units has been synthesised and experimentally characterised by structural, optical, and electrochemical methods. Solution-processed and thermally evaporated thin films of 1 have also been explored as active materials in organic field-effect transistors (OFETs). For these devices, hole field-effect mobilities of μFE=(1.3±0.5)×10−3 and (2.7±0.4)×10−3 cm2 V s−1 were determined for the solution-processed and thermally evaporated thin films, respectively. An intense intramolecular charge-transfer (ICT) transition at around 495 nm dominates the optical absorption spectrum of the neutral dyad, which also shows a weak emission from its ICT state. The iodine-induced oxidation of 1 leads to a partially oxidised crystalline charge-transfer (CT) salt {(1)2I3}, and eventually also to a fully oxidised compound {1I3}⋅1/2I2. Single crystals of the former CT compound, exhibiting a highly symmetrical crystal structure, reveal a fairly good room temperature electrical conductivity of the order of 2 S cm−1. The one-dimensional spin system bears compactly bonded BTD acceptors (spatial localisation of the LUMO) along its ridge.