146 resultados para trajectory accuracy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Concerns of rising healthcare costs and the ever increasing desire to improve surgical outcome have motivated the development of a new robotic assisted surgical procedure for the implantation of artificial hearing devices (AHDs). This paper describes our efforts to enable minimally invasive, cost effective surgery for the implantation of AHDs. We approach this problem with a fundamental goal to reduce errors from every component of the surgical workflow from imaging and trajectory planning to patient tracking and robot development. These efforts were successful in reducing overall system error to a previously unattained level.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for orbital debris. The debris objects are discovered during systematic survey observations. In general only a short observation arc, or tracklet, is available for most of these objects. From this discovery tracklet a first orbit determination is computed in order to be able to find the object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In this paper, the accuracy of the initial orbit determination is analyzed. This depends on a number of factors: tracklet length, number of observations, type of orbit, astrometric error, and observation geometry. The latter is characterized by both the position of the object along its orbit and the location of the observing station. Different positions involve different distances from the target object and a different observing angle with respect to its orbital plane and trajectory. The present analysis aims at optimizing the geometry of the discovery observation is depending on the considered orbit.
Resumo:
The aim of this in vitro study was to assess the influence of varying examiner's clinical experience on the reproducibility and accuracy of radiographic examination for occlusal caries detection. Standardized bitewing radiographs were obtained from 166 permanent molars. Radiographic examination was performed by final-year dental students from two universities (A, n = 5; B, n = 5) and by dentists with 5 to 7 years of experience who work in two different countries (C, n = 5; D, n = 5). All examinations were repeated after 1-week interval. The teeth were histologically prepared and assessed for caries extension. For intraexaminer reproducibility, the unweighted kappa values were: A (0.11-0.40), B (0.12-0.33), C (0.47-0.58), and D (0.42-0.71). Interexaminer reproducibility statistics were computed based on means ± SD of unweighted kappa values: A (0.07 ± 0.05), B (0.12 ± 0.09), C (0.24 ± 0.08), and D (0.33 ± 0.10). Sensitivity, specificity, and accuracy were calculated at D(1) and D(3) thresholds and compared by performing McNemar test (p = 0.05). D(1) sensitivity ranged between 0.29 and 0.75 and specificity between 0.24 and 0.85. D(3) specificity was moderate to high (between 0.62 and 0.95) for all groups, with statistically significant difference between the dentists groups (C and D). Sensitivity was low to moderate (between 0.21 and 0.57) with statistically significant difference for groups B and D. Accuracy was similar for all groups (0.55). Spearman's correlations were: A (0.12), B (0.24), C (0.30), and D (0.38). In conclusion, the reproducibility of radiographic examination was influenced by the examiner's clinical experience, training, and dental education as well as the accuracy in detecting occlusal caries.
Resumo:
To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.
Resumo:
To assess the diagnostic accuracy, image quality, and radiation dose of an iterative reconstruction algorithm compared with a filtered back projection (FBP) algorithm for abdominal computed tomography (CT) at different tube voltages.
Resumo:
The best available test for the diagnosis of upper extremity deep venous thrombosis (UEDVT) is contrast venography. The aim of this systematic review was to assess whether the diagnostic accuracy of other tests for clinically suspected UEDVT is high enough to justify their use in clinical practise and to evaluate if any test can replace venography.
Resumo:
The interest in automatic volume meshing for finite element analysis (FEA) has grown more since the appearance of microfocus CT (μCT), due to its high resolution, which allows for the assessment of mechanical behaviour at a high precision. Nevertheless, the basic meshing approach of generating one hexahedron per voxel produces jagged edges. To prevent this effect, smoothing algorithms have been introduced to enhance the topology of the mesh. However, whether smoothing also improves the accuracy of voxel-based meshes in clinical applications is still under question. There is a trade-off between smoothing and quality of elements in the mesh. Distorted elements may be produced by excessive smoothing and reduce accuracy of the mesh. In the present work, influence of smoothing on the accuracy of voxel-based meshes in micro-FE was assessed. An accurate 3D model of a trabecular structure with known apparent mechanical properties was used as a reference model. Virtual CT scans of this reference model (with resolutions of 16, 32 and 64 μm) were then created and used to build voxel-based meshes of the microarchitecture. Effects of smoothing on the apparent mechanical properties of the voxel-based meshes as compared to the reference model were evaluated. Apparent Young’s moduli of the smooth voxel-based mesh were significantly closer to those of the reference model for the 16 and 32 μm resolutions. Improvements were not significant for the 64 μm, due to loss of trabecular connectivity in the model. This study shows that smoothing offers a real benefit to voxel-based meshes used in micro-FE. It might also broaden voxel-based meshing to other biomechanical domains where it was not used previously due to lack of accuracy. As an example, this work will be used in the framework of the European project ContraCancrum, which aims at providing a patient-specific simulation of tumour development in brain and lungs for oncologists. For this type of clinical application, such a fast, automatic, and accurate generation of the mesh is of great benefit.