5 resultados para tissue organization

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to analyze and compare the deposition of cartilage-specific extracellular matrix components and cellular organization in scaffold-free neocartilage produced in microgravity and simulated microgravity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against pathogens and plays key roles in the activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules that recognize pathogen-associated molecular patterns and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. Pentraxins are essential constituents of the humoral arm of innate immunity and represent a superfamily of highly conserved acute phase proteins, traditionally classified into short and long pentraxins. Pentraxin 3 (PTX3) is the prototypic member of the long pentraxins subfamily. As opposed to C-reactive protein, whose sequence and regulation have not been conserved during evolution from mouse to man, the evolutionary conservation of sequence, gene organization and regulation of PTX3 has allowed addressing its pathophysiological roles in genetically modified mice, in diverse conditions, ranging from infections to sterile inflammation, angiogenesis and female fertility. Despite this conservation, a number of predominantly non-coding polymorphisms have been identified in the PTX3 gene which, when associated in particular haplotypes, have been shown to be relevant in clinical conditions including infection and fertility. Here we review the studies on PTX3, with emphasis on pathogen recognition, tissue remodelling and crosstalk with other components of the innate immune system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To prospectively compare cartilage T2 values after microfracture therapy (MFX) and matrix-associated autologous chondrocyte transplantation (MACT) repair procedures. MATERIALS AND METHODS: The study had institutional review board approval by the ethics committee of the Medical University of Vienna; informed consent was obtained. Twenty patients who underwent MFX or MACT (10 in each group) were enrolled. For comparability, patients of each group were matched by mean age (MFX, 40.0 years +/- 15.4 [standard deviation]; MACT, 41.0 years +/- 8.9) and postoperative interval (MFX, 28.6 months +/- 5.2; MACT, 27.4 months +/- 13.1). Magnetic resonance (MR) imaging was performed with a 3-T MR imager, and T2 maps were calculated from a multiecho spin-echo measurement. Global, as well as zonal, quantitative T2 values were calculated within the cartilage repair area and within cartilage sites determined to be morphologically normal articular cartilage. Additionally, with consideration of the zonal organization, global regions of interest were subdivided into deep and superficial areas. Differences between cartilage sites and groups were calculated by using a three-way analysis of variance. RESULTS: Quantitative T2 assessment of normal native hyaline cartilage showed similar results for all patients and a significant trend of increasing T2 values from deep to superficial zones (P < .05). In cartilage repair areas after MFX, global mean T2 was significantly reduced (P < .05), whereas after MACT, mean T2 was not reduced (P > or = .05). For zonal variation, repair tissue after MFX showed no significant trend between different depths (P > or = .05), in contrast to repair tissue after MACT, in which a significant increase from deep to superficial zones (P < .05) could be observed. CONCLUSION: Quantitative T2 mapping seems to reflect differences in repair tissues formed after two surgical cartilage repair procedures. (c) RSNA, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.