83 resultados para tissue factor
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Decreased heart rate variability (HRV) has been associated with an increased risk of atherosclerosis. We hypothesized that a decrease in frequency domains of resting HRV would be associated with elevated plasma levels of interleukin (IL)-6 and soluble tissue factor (sTF) both previously shown to prospectively predict atherothrombotic events in healthy subjects. Subjects were 102 healthy and unmedicated black and white middle-aged men and women. We determined IL-6 and sTF antigen in plasma and HRV measures from surface electrocardiogram data using spectral analysis. All statistical analyses controlled for age, gender, ethnicity, smoking status, blood pressure, and body mass index. Low amounts of low frequency (LF) power (beta=-0.31, p=0.007) and high frequency (HF) power (beta=-0.36, p=0.002) were associated with increased amounts of IL-6, explaining 7% and 9% of the variance, respectively. Interactions between LF power and IL-6 (p=0.002) and between HF power and IL-6 (p=0.012) explained 8% and 5%, respectively, of the variance in sTF. Post hoc analyses showed associations between IL-6 and sTF when LF power (beta=0.51, p<0.001) and HF power (beta=0.48, p<0.001) were low but not when LF power and high HF power were high. The findings suggest that systemic low-grade inflammatory activity is associated with a decrease in HRV. Furthermore, there was a positive relationship between plasma levels of IL-6 and sTF antigen when HRV was low. Inflammation and related hypercoagulability might particularly contribute to atherothrombotic events in a setting of decreased HRV.
Resumo:
Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.
Resumo:
Coagulation factor XII (FXII) inhibitors are of interest for the study of the protease in the intrinsic coagulation pathway, for the suppression of contact activation in blood coagulation assays, and they have potential application in antithrombotic therapy. However, synthetic FXII inhibitors developed to date have weak binding affinity and/or poor selectivity. Herein, we developed a peptide macrocycle that inhibits activated FXII (FXIIa) with an inhibitory constant Ki of 22 nM and a selectivity of >2000-fold over other proteases. Sequence and structure analysis revealed that one of the two macrocyclic rings of the in vitro evolved peptide mimics the combining loop of corn trypsin inhibitor, a natural protein-based inhibitor of FXIIa. The synthetic inhibitor blocked intrinsic coagulation initiation without affecting extrinsic coagulation. Furthermore, the peptide macrocycle efficiently suppressed plasma coagulation triggered by contact of blood with sample tubes and allowed specific investigation of tissue factor initiated coagulation.
Resumo:
A prothrombotic state may contribute to the elevated cardiovascular risk in patients with obstructive sleep apnea (OSA). We investigated the relationship between apnea severity and hemostasis factors and effect of continuous positive airway pressure (CPAP) treatment on hemostatic activity. We performed full overnight polysomnography in 44 OSA patients (mean age 47+/-10 years), yielding apnea-hypopnea index (AHI) and mean nighttime oxyhemoglobin saturation (SpO2) as indices of apnea severity. For treatment, subjects were double-blind randomized to 2 weeks of either therapeutic CPAP (n = 18), 3 l/min supplemental nocturnal oxygen (n = 16) or placebo-CPAP (<1 cm H2O) (n = 10). Levels of von Willebrand factor antigen (VWF:Ag), soluble tissue factor (sTF), D-dimer, and plasminogen activator inhibitor (PAI)-1 antigen were measured in plasma pre- and posttreatment. Before treatment, PAI-1 was significantly correlated with AHI (r = 0.47, p = 0.001) and mean nighttime SpO2 (r = -0.32, p = 0.035), but these OSA measures were not significantly related with VWF:Ag, sTF, and D-dimer. AHI was a significant predictor of PAI-1 (R2 = 0.219, standardized beta = 0.47, p = 0.001), independent of mean nighttime SpO2, body mass index (BMI), and age. A weak time-by-treatment interaction for PAI-1 was observed (p = 0.041), even after adjusting for age, BMI, pre-treatment AHI, and mean SpO2 (p = 0.046). Post hoc analyses suggested that only CPAP treatment was associated with a decrease in PAI-1 (p = 0.039); there were no changes in VWF:Ag, sTF, and D-dimer associated with treatment with placebo-CPAP or with nocturnal oxygen. Apnea severity may be associated with impairment in the fibrinolytic capacity. To the extent that our sample size was limited, the observation that CPAP treatment led to a decrease in PAI-1 in OSA must be regarded as tentative.
Resumo:
Although rare, stent thrombosis remains a severe complication after stent implantation owing to its high morbidity and mortality. Since the introduction of drug-eluting stents (DES), most interventional centers have noted stent thrombosis up to 3 years after implantation, a complication rarely seen with bare-metal stents. Some data from large registries and meta-analyses of randomized trials indicate a higher risk for DES thrombosis, whereas others suggest an absence of such a risk. Several factors are associated with an increased risk of stent thrombosis, including the procedure itself (stent malapposition and/or underexpansion, number of implanted stents, stent length, persistent slow coronary blood flow, and dissections), patient and lesion characteristics, stent design, and premature cessation of antiplatelet drugs. Drugs released from DES exert distinct biological effects, such as activation of signal transduction pathways and inhibition of cell proliferation. As a result, although primarily aimed at preventing vascular smooth muscle cell proliferation and migration (ie, key factors in the development of restenosis), they also impair reendothelialization, which leads to delayed arterial healing, and induce tissue factor expression, which results in a prothrombogenic environment. In the same way, polymers used to load these drugs have been associated with DES thrombosis. Finally, DES impair endothelial function of the coronary artery distal to the stent, which potentially promotes the risk of ischemia and coronary occlusion. Although several reports raise the possibility of a substantially higher risk of stent thrombosis in DES, evidence remains inconclusive; as a consequence, both large-scale and long-term clinical trials, as well as further mechanistic studies, are needed. The present review focuses on the pathophysiological mechanisms and pathological findings of stent thrombosis in DES.
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
OBJECTIVE: Numerous studies have reported the technical aspects and results of surgical and/or endovascular treatment of cranial dural arteriovenous fistulae (cDAVF) and spinal dural arteriovenous fistulae (sDAVF). Only a few of them have addressed the question of thrombophilic conditions, which may be relevant as pathogenetic factors or can increase the risk for venous thromboembolic events. Therefore, the objective of this study is to compare thrombophilic risk factors in patients with cDAVF and sDAVF with no history of trauma. METHODS: A total of 43 patients (25 with cDAVF and 18 with sDAVF) were included in this study. Blood samples were analyzed for G20210A mutation of the prothrombin gene and factor V Leiden mutation. In all patients, prothrombin time, international normalized ratio, fibrinogen, antithrombin, protein C and S activity, von Willebrand factor antigen, ristocetin cofactor activity, D-dimer, coagulation factor VIII activity, and tissue factor pathway inhibitor were determined. Screening was performed for the occurrence of lupus antiphospholipid and cardiolipin antibodies. RESULTS: The prevalence of G20210A mutation of the prothrombin gene was significantly higher in patients with cDAVF (n = 6) compared with patients with sDAVF (n = 0; P < 0.05, Fisher's exact test). A factor V Leiden mutation was found in 3 patients with sDAVF and in 1 patient with cDAVF (P = 0.29, Fisher's exact test). No significant difference was found for other parameters, except for fibrinogen, but decreased protein C activity was more frequent in patients with cDAVF compared with patients with sDAVF (4 versus 1). Decreased protein S activity was encountered in 3 patients (2 with sDAVF and 1 with cDAVF). Cardiolipin antibodies were found in 2 patients with cDAVF but in none with sDAVF, whereas only 1 patient with sDAVF had lupus antiphospholipid antibodies. CONCLUSION: In both groups of patients with dural arteriovenous fistulae, genetic thrombophilic abnormalities occurred in a higher percentage than in the general population. The differences of the genetic abnormalities may be involved in different pathophysiological mechanism(s) in the development of these distinct neurovascular entities.
Resumo:
Posttraumatic stress disorder (PTSD) confers an increased cardiovascular risk. In 14 otherwise healthy patients with PTSD and in 14 age- and gender-matched non-PTSD controls, we investigated whether the categorical diagnosis of PTSD and severity of PTSD symptom clusters (i.e. re-experiencing, avoidance, arousal, and overall score) would be associated with plasma concentrations of three markers of endothelial dysfunction [soluble tissue factor (sTF), von Willebrand factor (VWF), and soluble intercellular adhesion molecule (sICAM)-1]. Compared with controls, patients had significantly higher sTF; this difference became nonsignificant when controlling for psychological distress. VWF and sICAM-1 levels were not significantly different between patients and controls. In the entire sample virtually all PTSD symptom clusters correlated significantly and positively with sTF and VWF but not with sICAM-1. The correlation between symptoms of re-experiencing and sTF was significantly different between patients and controls. Controlling for symptoms of anxiety and depression (i.e. psychological distress) rendered most associations between PTSD symptom clusters and sTF nonsignificant, whereas controlling for age retained significance of associations with VWF. Posttraumatic stress showed a continuous relationship with sTF and VWF, with the former relationship being partly affected by psychological distress. This suggests one mechanism by which posttraumatic stress could contribute to atherosclerosis.
Resumo:
BACKGROUND: Complete investigation of thrombophilic or hemorrhagic clinical presentations is a time-, apparatus-, and cost-intensive process. Sensitive screening tests for characterizing the overall function of the hemostatic system, or defined parts of it, would be very useful. For this purpose, we are developing an electrochemical biosensor system that allows measurement of thrombin generation in whole blood as well as in plasma. METHODS: The measuring system consists of a single-use electrochemical sensor in the shape of a strip and a measuring unit connected to a personal computer, recording the electrical signal. Blood is added to a specific reagent mixture immobilized in dry form on the strip, including a coagulation activator (e.g., tissue factor or silica) and an electrogenic substrate specific to thrombin. RESULTS: Increasing thrombin concentrations gave standard curves with progressively increasing maximal current and decreasing time to reach the peak. Because the measurement was unaffected by color or turbidity, any type of blood sample could be analyzed: platelet-poor plasma, platelet-rich plasma, and whole blood. The test strips with the predried reagents were stable when stored for several months before testing. Analysis of the combined results obtained with different activators allowed discrimination between defects of the extrinsic, intrinsic, and common coagulation pathways. Activated protein C (APC) predried on the strips allowed identification of APC-resistance in plasma and whole blood samples. CONCLUSIONS: The biosensor system provides a new method for assessing thrombin generation in plasma or whole blood samples as small as 10 microL. The assay is easy to use, thus allowing it to be performed in a point-of-care setting.
Resumo:
Hypothesis: Early recognition of coagulopathy may improve the care of patients with multiple injuries. Rapid thrombelastography (RapidTEG) is a new variant of thrombelastography (TEG), in which coagulation is initiated by the addition of protein tissue factor. The kinetics of coagulation and the times of measurement were compared for two variants of TEG--RapidTEG and conventional TEG, in which coagulation was initiated with kaolin. The measurements were performed on blood samples from 20 patients with multiple injuries. The RapidTEG results were also compared with conventional measurements of blood coagulation. The mean time for the RapidTEG test was 19.2 +/- 3.1 minutes (mean +/- SD), in comparison with 29.9 +/- 4.3 minutes for kaolin TEG and 34.1 +/- 14.5 minutes for conventional coagulation tests. The mean time for the RapidTEG test was 30.8 +/- 5.72 minutes, in comparison with 41.5 +/- 5.66 minutes for kaolin TEG and 64.9 +/- 18.8 for conventional coagulation tests---measured from admission of the patients to the resuscitation bay until the results were available. There were significant correlations between the RapidTEG results and those from kaolin TEG and conventional coagulation tests. RapidTEG is the most rapid available test for providing reliable information on coagulopathy in patients with multiple injuries. This has implications for improving patient care.
Resumo:
AIMS: Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. METHODS AND RESULTS: In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39+/-8% and 42+/-9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61+/-12% of the area at risk for vehicle controls to 39+/-14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. CONCLUSION: The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injury.
Resumo:
OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.
Resumo:
Complement and the TLR family constitute two important branches of innate immunity. We previously showed attenuating effects on inflammation and thromogenicity by inhibiting the TLR coreceptor CD14 in porcine sepsis. In the present study, we explored the effect of the C5 and leukotriene B4 inhibitor Ornithodoros moubata complement inhibitor (OmCI; also known as coversin) alone and combined with anti-CD14 on the early inflammatory, hemostatic, and hemodynamic responses in porcine Escherichia coli-induced sepsis. Pigs were randomly allocated to negative controls (n = 6), positive controls (n = 8), intervention with OmCI (n = 8), or with OmCI and anti-CD14 (n = 8). OmCI ablated C5 activation and formation of the terminal complement complex and significantly decreased leukotriene B4 levels in septic pigs. Granulocyte tissue factor expression, formation of thrombin-antithrombin complexes (p < 0.001), and formation of TNF-α and IL-6 (p < 0.05) were efficiently inhibited by OmCI alone and abolished or strongly attenuated by the combination of OmCI and anti-CD14 (p < 0.001 for all). Additionally, the combined therapy attenuated the formation of plasminogen activator inhibitor-1 (p < 0.05), IL-1β, and IL-8, increased the formation of IL-10, and abolished the expression of wCD11R3 (CD11b) and the fall in neutrophil cell count (p < 0.001 for all). Finally, OmCI combined with anti-CD14 delayed increases in heart rate by 60 min (p < 0.05) and mean pulmonary artery pressure by 30 min (p < 0.01). Ex vivo studies confirmed the additional effect of combining anti-CD14 with OmCI. In conclusion, upstream inhibition of the key innate immunity molecules, C5 and CD14, is a potential broad-acting treatment regimen in sepsis as it efficiently attenuated inflammation and thrombogenicity and delayed hemodynamic changes.
Resumo:
An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.