81 resultados para thyroid hormone receptor
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this study the regulation of GH-receptor gene (GHR/GHBP) transcription by different concentrations of GH (0, 12.5, 25, 50, 150, 500 ng/ml) with and without variable TSH concentrations (0.5, 2, 20 mU/l) in primary human thyroid cells cultured in serum-free hormonally-defined medium was studied. The incubation time was 6 h and GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification at hourly intervals. Correlating with the GH-concentrations added a constant and significant increase of GHR/GHBP gene transcription was found. After the addition of 12.5 ng/ml GH, GHR/GHBP mRNA concentration remained constant over the incubation period of 6 h but in comparison with the experiments where no GH was added there was a significant change of GHR/GHBP mRNA expression. Following the addition of 25 ng/ml GH a slight but further increase of GHR/GHBP transcription products was seen which increased even more in the experiments where higher GH concentrations were used. These data focusing on GHR/GHBP gene transcription derived from cDNA synthesis and quantitative PCR amplification were confirmed by run-on experiments. Furthermore, cycloheximide did not affect these changes supporting the notion that GH stimulates GHR/GHBP gene transcription directly. In a second set of experiments, in combination with variable TSH levels, identical GH concentrations were used and no difference in either GHR/GHBP mRNA levels or in transcription rate (run-on experiments) could be found. In conclusion, we report data showing that primary thyroid cells express functional GH-receptors in which GH has a direct and dose dependent effect on the GHR/GHBP gene transcription. Furthermore, TSH does not a have a major impact on GHR/GHBP gene regulation.
Resumo:
Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up.
Resumo:
Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains.
Resumo:
The Breast International Group (BIG) 1-98 study is a four-arm trial comparing 5 years of monotherapy with tamoxifen or with letrozole or with sequences of 2 years of one followed by 3 years of the other for postmenopausal women with endocrine-responsive early invasive breast cancer. From 1998 to 2003, BIG -98 enrolled 8,010 women. The enhanced design f the trial enabled two complementary analyses of efficacy and safety. Collection of tumor specimens further enabled treatment comparisons based on tumor biology. Reports of BIG 1-98 should be interpreted in relation to each individual patient as she weighs the costs and benefits of available treatments.
Resumo:
BACKGROUND: Tumor levels of steroid hormone receptors, a factor used to select adjuvant treatment for early-stage breast cancer, are currently determined with immunohistochemical assays. These assays have a discordance of 10%-30% with previously used extraction assays. We assessed the concordance and predictive value of hormone receptor status as determined by immunohistochemical and extraction assays on specimens from International Breast Cancer Study Group Trials VIII and IX. These trials predominantly used extraction assays and compared adjuvant chemoendocrine therapy with endocrine therapy alone among pre- and postmenopausal patients with lymph node-negative breast cancer. Trial conclusions were that combination therapy provided a benefit to pre- and postmenopausal patients with estrogen receptor (ER)-negative tumors but not to ER-positive postmenopausal patients. ER-positive premenopausal patients required further study. METHODS: Tumor specimens from 571 premenopausal and 976 postmenopausal patients on which extraction assays had determined ER and progesterone receptor (PgR) levels before randomization from October 1, 1988, through October 1, 1999, were re-evaluated with an immunohistochemical assay in a central pathology laboratory. The endpoint was disease-free survival. Hazard ratios of recurrence or death for treatment comparisons were estimated with Cox proportional hazards regression models, and discriminatory ability was evaluated with the c index. All statistical tests were two-sided. RESULTS: Concordance of hormone receptor status determined by both assays ranged from 74% (kappa = 0.48) for PgR among postmenopausal patients to 88% (kappa = 0.66) for ER in postmenopausal patients. Hazard ratio estimates were similar for the association between disease-free survival and ER status (among all patients) or PgR status (among postmenopausal patients) as determined by the two methods. However, among premenopausal patients treated with endocrine therapy alone, the discriminatory ability of PgR status as determined by immunohistochemical assay was statistically significantly better (c index = 0.60 versus 0.51; P = .003) than that determined by extraction assay, and so immunohistochemically determined PgR status could predict disease-free survival. CONCLUSIONS: Trial conclusions in which ER status (for all patients) or PgR status (for postmenopausal patients) was determined by immunohistochemical assay supported those determined by extraction assays. However, among premenopausal patients, trial conclusions drawn from PgR status differed--immunohistochemically determined PgR status could predict response to endocrine therapy, unlike that determined by the extraction assay.
Resumo:
BACKGROUND: Aromatase inhibitors are considered standard adjuvant endocrine treatment of postmenopausal women with hormone receptor-positive breast cancer, but it remains uncertain whether aromatase inhibitors should be given upfront or sequentially with tamoxifen. Awaiting results from ongoing randomized trials, we examined prognostic factors of an early relapse among patients in the BIG 1-98 trial to aid in treatment choices. PATIENTS AND METHODS: Analyses included all 7707 eligible patients treated on BIG 1-98. The median follow-up was 2 years, and the primary end point was breast cancer relapse. Cox proportional hazards regression was used to identify prognostic factors. RESULTS: Two hundred and eighty-five patients (3.7%) had an early relapse (3.1% on letrozole, 4.4% on tamoxifen). Predictive factors for early relapse were node positivity (P < 0.001), absence of both receptors being positive (P < 0.001), high tumor grade (P < 0.001), HER-2 overexpression/amplification (P < 0.001), large tumor size (P = 0.001), treatment with tamoxifen (P = 0.002), and vascular invasion (P = 0.02). There were no significant interactions between treatment and the covariates, though letrozole appeared to provide a greater than average reduction in the risk of early relapse in patients with many involved lymph nodes, large tumors, and vascular invasion present. CONCLUSION: Upfront letrozole resulted in significantly fewer early relapses than tamoxifen, even after adjusting for significant prognostic factors.
Resumo:
In this study the hypothesis that triiodothyronine (T3) and growth hormone (GH) may have some direct or indirect effect on the regulation of GH-receptor/GH-binding protein (GHR/GHBP) gene transcription was tested. Different concentrations of T3 (0, 0.5, 2, 10 nmol/l) and GH (0, 10, 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally-defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification. GH at a concentration of 10 ng/ml resulted in a significant increase of GHR/GHBP gene expression whereas a supraphysiological concentration of GH (150 ng/ml) caused a significant decrease of GHR/GHBP mRNA levels. The simultaneous addition of 0.5 nmol/l T3 to the variable concentrations of GH did not modify GHR/GHBP mRNA levels whereas the addition of 2 nmol/l up-regulated GHR/GHBP gene expression already after 1 h, an increase which was even more marked when 10 nmol/l of T3 was added. Interestingly, there was a positive correlation between the increase of GHR/GHBP mRNA levels and the T3 concentration used (r: 0.8). In addition, nuclear run-on experiments and GHBP determinations were performed which confirmed the changes in GHR/GHBP mRNA levels. Cycloheximide (10 microg/ml) did not alter transcription rate following GH addition but blocked GHR/GHBP gene transcription in T3 treated cells indicating that up-regulation of GHR/GHBP gene transcription caused by T3 requires new protein synthesis and is, therefore, dependent on indirect mechanisms. In conclusion, we present data showing that T3 on its own has a stimulatory effect on GHR/GHBP gene transcription which is indirect and additive to the GH-induced changes.
Resumo:
The liver has an important role in metabolic regulation and control of the somatotropic axis to adapt successfully to physiological and environmental changes in dairy cows. The aim of this study was to investigate the adaptation to negative energy balance (NEB) at parturition and to a deliberately induced NEB by feed restriction at 100 days in milk. The hepatic gene expression and the endocrine system of the somatotropic axis and related parameters were compared between the early and late NEB period. Fifty multiparous cows were subjected to 3 periods (1=early lactation up to 12 wk postpartum, 2=feed restriction for 3 wk beginning at around 100 days in milk with a feed-restricted and a control group, and 3=subsequent realimentation period for the feed-restricted group for 8 wk). In period 1, plasma growth hormone reached a maximum in early lactation, whereas insulin-like growth factor-I (IGF-I), leptin, the thyroid hormones, insulin, and the revised quantitative insulin sensitivity check index increased gradually after a nadir in early lactation. Three days after parturition, hepatic mRNA abundance of growth hormone receptor 1A, IGF-I, IGF-I receptor and IGF-binding protein-3 (IGFBP-3) were decreased, whereas mRNA of IGFBP-1 and -2 and insulin receptor were upregulated as compared with wk 3 antepartum. During period 2, feed-restricted cows showed decreased plasma concentrations of IGF-I and leptin compared with those of control cows. The revised quantitative insulin sensitivity check index was lower for feed-restricted cows (period 2) than for control cows. Compared with the NEB in period 1, the changes due to the deliberately induced NEB (period 2) in hormones were less pronounced. At the end of the 3-wk feed restriction, the mRNA abundance of IGF-I, IGFBP-1, -2, -3, and insulin receptor was increased as compared with the control group. The different effects of energy deficiency at the 2 stages in lactation show that the endocrine regulation changes qualitatively and quantitatively during the course of lactation.
Resumo:
Thyroid hormone is a central regulator of body functions. Disorders of thyroid function are considered to be a cause of electrolyte disorders. Only few data on the association between thyroid function and electrolyte disorders exists.
Resumo:
The effectiveness of antithyroid drug treatment of Graves' hyperthyroidism is documented by measuring initially free T4 and free T3 and later free T4, free T3 and TSH. An elevated titer of the Graves'-specific thyroid stimulating antibodies is not usually rechecked before the end of the antithyroid drug therapy. Thyroxine treatment of primary hypothyroidism is controlled by TSH measurements. In patients in whom TSH levels might be affected by drugs or nonthyroid diseases, free T4 is measured in addition to TSH. The assessment of the treatment of Hashimoto's chronic thyroiditis consists of the control of the therapy of its associated hypothyroidism. In subacute thyroiditis de Quervain control of the effectiveness of the analgesic therapy is most important. To check the effect of thyroid hormone treatment given with the intent to reduce goiter size, serial sonographies are of great value. In the follow-up of patients with thyroid carcinomas, measurements of thyroglobulin (for papillary and follicular thyroid cancers) and of calcitonin (for medullary thyroid cancers) in the serum as well as thyroid scans and other imaging procedures play an important role.
Resumo:
Thyroid diseases are caused by a disturbance of thyroid hormone secretion, inflammations or tumors of the thyroid or combinations thereof. Most important causes for hyperthyroidism are Graves' disease and toxic nodular goiters (including toxic adenomas). Hypothyroidism is often caused by Hashimoto's chronic thyroiditis and can occur in patients after thyroidectomy. Chronic hashimoto's thyroiditis and subacute de Quervain's thyroiditis are the thyroid inflammations most frequently seen. Graves' disease and Hashimoto's thyroiditis are autoimmune thyroid diseases. Thyroid tumors encompass benign solitary nodules, diffuse and nodular goiters, papillary, follicular, medullary and anaplastic carcinomas.
Resumo:
Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications.
Resumo:
The association between subclinical thyroid dysfunction and cardiovascular outcomes has been recently clarified with the publication of three individual participant data (IPD) analyses from the Thyroid Studies Collaboration. We identified original cohort studies with a systematic review and pooled individual data from over 70'000 participants to obtain a more precise estimate of the risks of cardiovascular outcomes associated with subclinical thyroid dysfunction. Subclinical hypothyroidism and subclinical hyperthyroidism, defined as normal thyroxine (FT4) levels with increased or decreased Thyroid-Stimulating Hormones (TSH or thyrotropin) respectively, are associated with increased risk of cardiovascular outcomes compared to euthyroid state, particularly in those with a more pronounced thyroid dysfunction. Specifically, subclinical hypothyroidism is associated with an increased risk of coronary heart disease (CHD) events, CHD mortality and heart failure (HF) events in individuals with higher TSH levels, particularly in those with TSH levels ≥10.0 mIU/L. Conversely, subclinical hyperthyroidism is associated with an increased risk of total mortality, CHD mortality, HF and atrial fibrillation, particularly in those with suppressed TSH levels <0.10 mIU/L. Pending ongoing randomized controlled trials, these observational findings allow identifying potential TSH thresholds for thyroid medication initiation based on risk of clinical outcomes, although clinical decision based solely on observational data need caution. The impact of thyroid replacement among the elderly with subclinical hypothyroidism is currently studied in a multicenter international randomized controlled trial (Thyroid Hormone Replacement for Subclinical Hypothyroidism Trial, TRUST trial).