194 resultados para threshold detector
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This Letter presents a search for quantum black-hole production using 20.3 fb(-1) of data collected with the ATLAS detector in pp collisions at the LHC at root s = 8 TeV. The quantum black holes are assumed to decay into a final state characterized by a lepton (electron or muon) and a jet. In either channel, no event with a lepton-jet invariant mass of 3.5 TeV or more is observed, consistent with the expected background. Limits are set on the product of cross sections and branching fractions for the lepton + jet final states of quantum black holes produced in a search region for invariant masses above 1 TeV. The combined 95% confidence level upper limit on this product for quantum black holes with threshold mass above 3.5 TeV is 0.18 fb. This limit constrains the threshold quantum black-hole mass to be above 5.3 TeV in the model considered.
Resumo:
A search for an excess of events with multiple high transverse momentum objects including charged leptons and jets is presented, using 20.3 fb−1 of proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2012 at a centre-of-mass energy of √s = 8TeV. No excess of events beyond Standard Model expectations is observed. Using extra-dimensional models for black hole and string ball production and decay, exclusion contours are determined as a function of the mass threshold for production and the fundamental gravity scale for two, four and six extra dimensions. For six extra dimensions, mass thresholds of 4.8–6.2TeV are excluded at 95% confidence level, depending on the fundamental gravity scale and model assumptions. Upper limits on the fiducial cross-sections for non-Standard Model production of these final states are set.
Resumo:
OBJECTIVES: Hypoglycaemia (glucose <2.2 mmol/l) is a defining feature of severe malaria, but the significance of other levels of blood glucose has not previously been studied in children with severe malaria. METHODS: A prospective study of 437 consecutive children with presumed severe malaria was conducted in Mali. We defined hypoglycaemia as <2.2 mmol/l, low glycaemia as 2.2-4.4 mmol/l and hyperglycaemia as >8.3 mmol/l. Associations between glycaemia and case fatality were analysed for 418 children using logistic regression models and a receiver operator curve (ROC). RESULTS: There was a significant difference between blood glucose levels in children who died (median 4.6 mmol/l) and survivors (median 7.6 mmol/l, P < 0.001). Case fatality declined from 61.5% of the hypoglycaemic children to 46.2% of those with low glycaemia, 13.4% of those with normal glycaemia and 7.6% of those with hyperglycaemia (P < 0.001). Logistic regression showed an adjusted odds ratio (AOR) of 0.75 (0.64-0.88) for case fatality per 1 mmol/l increase in baseline blood glucose. Compared to a normal blood glucose, hypoglycaemia and low glycaemia both significantly increased the odds of death (AOR 11.87, 2.10-67.00; and 5.21, 1.86-14.63, respectively), whereas hyperglycaemia reduced the odds of death (AOR 0.34, 0.13-0.91). The ROC [area under the curve at 0.753 (95% CI 0.684-0.820)] indicated that glycaemia had a moderate predictive value for death and identified an optimal threshold at glycaemia <6.1 mmol/l, (sensitivity 64.5% and specificity 75.1%). CONCLUSIONS: If there is a threshold of blood glucose which defines a worse prognosis, it is at a higher level than the current definition of 2.2 mmol/l.
Resumo:
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Resumo:
Modern imaging technologies, such as computed tomography (CT) techniques, represent a great challenge in forensic pathology. The field of forensics has experienced a rapid increase in the use of these new techniques to support investigations on critical cases, as indicated by the implementation of CT scanning by different forensic institutions worldwide. Advances in CT imaging techniques over the past few decades have finally led some authors to propose that virtual autopsy, a radiological method applied to post-mortem analysis, is a reliable alternative to traditional autopsy, at least in certain cases. The authors investigate the occurrence and the causes of errors and mistakes in diagnostic imaging applied to virtual autopsy. A case of suicide by a gunshot wound was submitted to full-body CT scanning before autopsy. We compared the first examination of sectional images with the autopsy findings and found a preliminary misdiagnosis in detecting a peritoneal lesion by gunshot wound that was due to radiologist's error. Then we discuss a new emerging issue related to the risk of diagnostic failure in virtual autopsy due to radiologist's error that is similar to what occurs in clinical radiology practice.
Resumo:
This study investigated the excitability and accommodative properties of low-threshold human motor axons to test whether these motor axons have greater expression of the persistent Na(+) conductance, I(NaP). Computer-controlled threshold tracking was used to study 22 single motor units and the data were compared with compound motor potentials of various amplitudes recorded in the same experimental session. Detailed comparisons were made between the single units and compound potentials that were 40% or 5% of maximal amplitude, the former because this is the compound potential size used in most threshold tracking studies of axonal excitability, the latter because this is the compound potential most likely to be composed entirely of motor axons with low thresholds to electrical recruitment. Measurements were made of the strength-duration relationship, threshold electrotonus, current-voltage relationship, recovery cycle and latent addition. The findings did not support a difference in I(NaP). Instead they pointed to greater activity of the hyperpolarization-activated inwardly rectifying current (I(h)) as the basis for low threshold to electrical recruitment in human motor axons. Computer modelling confirmed this finding, with a doubling of the hyperpolarization-activated conductance proving the best single parameter adjustment to fit the experimental data. We suggest that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel(s) expressed on human motor axons may be active at rest and contribute to resting membrane potential.
Resumo:
Various factors, including maturity, have been shown to influence peripheral nerve excitability measures, but little is known about differences in these properties between axons with different stimulation thresholds. Multiple nerve excitability tests were performed on the caudal motor axons of immature and mature female rats, recording from tail muscles at three target compound muscle action potential (CMAP) levels: 10%, 40% ("standard" level), and 60% of the maximum CMAP amplitude. Compared to lower target levels, axons at high target levels have the following characteristics: lower strength-duration time constant, less threshold reduction during depolarizing currents and greater threshold increase to hyperpolarizing currents, most notably to long hyperpolarizing currents in mature rats. Threshold-dependent effects on peripheral nerve excitability properties depend on the maturation stage, especially inward rectification (Ih), which becomes inversely related to threshold level. Performing nerve excitability tests at different target levels is useful in understanding the variation in membrane properties between different axons within a nerve. Because of the threshold effects on nerve excitability and the possibility of increased variability between axons and altered electric recruitment order in disease conditions, excitability parameters measured only at the "standard" target level should be interpreted with caution, especially the responses to hyperpolarizing currents.
Resumo:
CBV is a vital perfusion parameter in estimating the viability of brain parenchyma (eg, in cases of ischemic stroke or after interventional vessel occlusion). Recent technologic advances allow parenchymal CBV imaging tableside in the angiography suite just before, during, or after an interventional procedure. The aim of this work was to analyze our preliminary clinical experience with this new imaging tool in different neurovascular interventions.