13 resultados para third order resonance
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.
Resumo:
PURPOSE: To prospectively evaluate whether intravenous morphine co-medication improves bile duct visualization of dual-energy CT-cholangiography. MATERIALS AND METHODS: Forty potential donors for living-related liver transplantation underwent CT-cholangiography with infusion of a hepatobiliary contrast agent over 40min. Twenty minutes after the beginning of the contrast agent infusion, either normal saline (n=20 patients; control group [CG]) or morphine sulfate (n=20 patients; morphine group [MG]) was injected. Forty-five minutes after initiation of the contrast agent, a dual-energy CT acquisition of the liver was performed. Applying dual-energy post-processing, pure iodine images were generated. Primary study goals were determination of bile duct diameters and visualization scores (on a scale of 0 to 3: 0-not visualized; 3-excellent visualization). RESULTS: Bile duct visualization scores for second-order and third-order branch ducts were significantly higher in the MG compared to the CG (2.9±0.1 versus 2.6±0.2 [P<0.001] and 2.7±0.3 versus 2.1±0.6 [P<0.01], respectively). Bile duct diameters for the common duct and main ducts were significantly higher in the MG compared to the CG (5.9±1.3mm versus 4.9±1.3mm [P<0.05] and 3.7±1.3mm versus 2.6±0.5mm [P<0.01], respectively). CONCLUSION: Intravenous morphine co-medication significantly improved biliary visualization on dual-energy CT-cholangiography in potential donors for living-related liver transplantation.
Resumo:
Precise intraoperative assessment of the architecture of the biliary tree could reduce lesions to intra- or extrahepatic bile ducts. The aim of this study was to test feasibility of intraoperative three-dimensional imaging during liver resections. Isocentric C-arm fluoroscopy acquires three-dimensional images during a 190 degrees orbital rotation. The bile ducts were displayed three-dimensionally by realtime rotational projections or multiplanar reconstructions. The technique was established ex vivo in a preserved cadaveric human liver. Intraoperative three-dimensional cholangiography was performed in five patients with centrally located liver malignancies. Complete data acquisition in 3 patients depicted precise anatomical details of the architecture of the biliary tree up to third order divisions. Biliary imaging can be improved by the application of real-time intraoperative three-dimensional cholangiography. For the development of computer-aided navigation in hepatobiliary procedures, this technique could be an important prerequisite for defining landmarks of the liver in a three-dimensional space.
Resumo:
Upper Jurassic (Kimmeridgian)±Upper Cretaceous (Cenomanian) inner platform carbonates in the Western Taurides are composed of metre-scale upward-shallowing cyclic deposits (parasequences) and important karstic surfaces capping some of the cycles. Peritidal cycles (shallow subtidal facies capped by tidal-¯at laminites or fenestrate limestones) are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Subtidal cycles are of two types and indicate incomplete shallowing. Submerged subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles consist of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure. Subtidal facies occur characteristically in the Jurassic, while peritidal cycles are typical for the Lower Cretaceous of the region. Within the foraminiferal and dasyclad algal biostratigraphic framework, four karst breccia levels are recognized as the boundaries of major second-order cycles, introduced for the ®rst time in this study. These levels correspond to the Kimmeridgian±Portlandian boundary, mid-Early Valanginian, mid-Early Aptian and mid-Cenomanian and represent important sea level falls which affected the distribution of foraminiferal fauna and dasyclad ¯ora of the Taurus carbonate platform. Within the Kimmeridgian±Cenomanian interval 26 third-order sequences (types 1 and 2) are recognized. These sequences are the records of eustatic sea level ¯uctuations rather than the records of local tectonic events because the boundaries of the sequences representing 1±4 Ma intervals are correlative with global sea level falls. Third-order sequences and metre-scale cyclic deposits are the major units used for long-distance, high-resolution sequence stratigraphic correlation in the Western Taurides. Metre-scale cyclic deposits (parasequences) in the Cretaceous show genetical stacking patterns within third-order sequences and correspond to fourth-order sequences representing 100±200 ka. These cycles are possibly the E2 signal (126 ka) of the orbital eccentricity cycles of the Milankovitch band. The slight deviation of values, calculated for parasequences, from the mean value of eccentricity cycles can be explained by the currently imprecise geochronology established in the Cretaceous and missed sea level oscillations when the platform lay above fluctuating sea level.
Resumo:
The completion of the third-order QCD corrections to the inclusive top-pair production cross section near threshold demonstrates that the strong dynamics is under control at the few percent level. In this paper we consider the effects of the Higgs boson on the cross section and, for the first time, combine the third-order QCD result with the third-order P-wave, the leading QED and the leading non-resonant contributions. We study the size of the different effects and investigate the sensitivity of the cross section to variations of the top-quark Yukawa coupling due to possible new physics effects.
Resumo:
Automatic scan planning for magnetic resonance imaging of the knee aims at defining an oriented bounding box around the knee joint from sparse scout images in order to choose the optimal field of view for the diagnostic images and limit acquisition time. We propose a fast and fully automatic method to perform this task based on the standard clinical scout imaging protocol. The method is based on sequential Chamfer matching of 2D scout feature images with a three-dimensional mean model of femur and tibia. Subsequently, the joint plane separating femur and tibia, which contains both menisci, can be automatically detected using an information-augmented active shape model on the diagnostic images. This can assist the clinicians in quickly defining slices with standardized and reproducible orientation, thus increasing diagnostic accuracy and also comparability of serial examinations. The method has been evaluated on 42 knee MR images. It has the potential to be incorporated into existing systems because it does not change the current acquisition protocol.
Resumo:
To determine the optimal stochastic whole body vibration (SR-WBV) load modality regarding pelvic floor muscle (PFM) activity in order to complete the SR-WBV training methodology for future PFM training with SR-WBV.
Resumo:
In schizophrenic psychoses, structural and functional alterations of the amygdala have been demonstrated by several neuroimaging studies. However, postmortem examinations on the brains of schizophrenics did not confirm the volume changes reported by volumetric magnetic resonance imaging (MRI) studies. In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed a trimodal MRI design including high-resolution volumetry, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) in a sample of 14 schizophrenic patients and 14 matched controls. Three-dimensional MRI volumetry revealed a significant reduction of amygdala raw volumes in the patient group, while amygdala volumes normalized for intracranial volume did not differ between the two groups. The regional diffusional anisotropy of the amygdala, expressed as inter-voxel coherence (COH), showed a marked and significant reduction in schizophrenics. Assessment of qMTI parameters yielded significant group differences for the T2 time of the bound proton pool and the T1 time of the free proton pool, while the semi-quantitative magnetization transfer ratio (MTR) did not differ between the groups. The application of multimodal MRI protocols is diagnostically relevant for the differentiation between schizophrenic patients and controls and provides a new strategy for the detection and characterization of subtle structural alterations in defined regions of the living brain.
Resumo:
Traumatic lesions of the subcutaneous fatty tissue provide important clues for forensic reconstruction. The interpretation of these patterns requires a precise description and recording of the position and extent of each lesion. During conventional autopsy, this evaluation is performed by dissecting the skin and subcutaneous tissues in successive layers. In this way, depending on the force and type of impact (right angle or tangent), several morphologically distinct stages of fatty tissue damage can be differentiated: perilobular hemorrhage (I), contusion (II), or disintegration (III) of the fat lobuli, and disintegration with development of a subcutaneous cavity (IV). In examples of virtopsy cases showing blunt trauma to the skin and fatty tissue, we analyzed whether these lesions can also be recorded and classified using multislice computed tomography (MSCT) and magnetic resonance imaging (MRI). MSCT has proven to be a valuable screening method to detect the lesions, but MRI is necessary in order to properly differentiate and classify the grade of damage. These noninvasive radiological diagnostic tools can be further developed to play an important role in forensic examinations, in particular when it comes to evaluating living trauma victims.
Resumo:
The aim of this study was to describe magnetic resonance imaging (MRI) findings associated with presumed elevated intracranial pressure (ICP) in dogs and to evaluate whether MRI could be used to discriminate between dogs with and without elevated ICP. Of 91 dogs that underwent cranial MRI examination, 18 (19.8%) were diagnosed with elevated ICP based on neurological examination, fundoscopy and transcranial Doppler ultrasonography. The MRI findings that showed the strongest association with elevated ICP were mass effect (odds ratio [OR], 78.5), caudal transtentorial herniation (OR, 72.0), subfalcine herniation (OR, 45.6), perilesional oedema (OR, 34.0), displacement of the lamina quadrigemina (OR, 27.7) and effacement of the cerebral sulci (OR, 27.1). The presence of any two or more of the following MRI findings identified elevated ICP with a sensitivity of 72% and a specificity of 96%: compression of the suprapineal recess, compression of the third ventricle, compression of the fourth ventricle, effacement of the cerebral sulci and caudal transposition of the lamina quadrigemina. In conclusion, there is an association between MRI findings and elevated ICP in dogs; therefore, MRI might be useful to discriminate between dogs with and without elevated ICP.
Resumo:
A search is presented for the production of new heavy quarks that decay to a Z boson and a third-generation Standard Model quark. In the case of a new charge +2/3 quark (T), the decay targeted is T → Zt, while the decay targeted for a new charge −1/3 quark (B) is B → Zb. The search is performed with a dataset corresponding to 20.3 fb−1 of pp collisions at √ s = 8TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum Z boson candidate reconstructed from a pair of oppositely charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the absence or presence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a b-hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production mediated by the strong interaction, or single production mediated by the electroweak interaction. No significant excess of events above the Standard Model expectation is observed, and lower limits are derived on the mass of vector-like T and B quarks under various branching ratio hypotheses, as well as upper limits on the agnitude of electroweak coupling parameters.
Resumo:
PURPOSE The aim of this study was to evaluate the utility of cardiac postmortem magnetic resonance (PMMR) to perform routine measurements of the ventricular wall thicknesses and the heart valves and to assess if imaging measurements are consistent with traditional autopsy measurements. METHODS In this retrospective study, 25 cases with cardiac PMMR and subsequent autopsy were included. The thicknesses of the myocardial walls as well as the circumferences of all heart valves were measured on cardiac PMMR and compared to autopsy measurements. Paired samples T-test and the Wilcoxon-Signed rank test, were used to compare autopsy and cardiac PMMR measurements. For exploring correlations, the Pearson's Correlation coefficient and the Spearman's Rho test were used. RESULTS Cardiac PMMR measurements of the aortic and pulmonary valve circumferences showed no significant differences from autopsy measurements. The mitral and tricuspid valves circumferences differed significantly from autopsy measurements. Left myocardial and right myocardial wall thickness also differed significantly from autopsy measurements. Left and right myocardial wall thickness, and tricuspid valve circumference measurements on cardiac PMMR and autopsy, correlated strongly and significantly. CONCLUSION Several PMMR measurements of cardiac parameters differ significantly from corresponding autopsy measurements. However, there is a strong correlation between cardiac PMMR measurements and autopsy measurements in the majority of these parameters. It is important to note that myocardial walls are thicker when measured in situ on cardiac PMMR than when measured at autopsy. Investigators using post-mortem MR should be aware of these differences in order to avoid false diagnoses of cardiac pathology based on cardiac PMMR.