54 resultados para thermally stimulated depolarization currents

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients in intensive care units frequently suffer muscle weakness and atrophy due to critical illness polyneuropathy (CIP), an axonal neuropathy associated with systemic inflammatory response syndrome and multiple organ failure. CIP is a frequent and serious complication of intensive care that delays weaning from mechanical ventilation and increases mortality. The pathogenesis of CIP is not well understood and no specific therapy is available. The aim of this project was to use nerve excitability testing to investigate the changes in axonal membrane properties occurring in CIP. Ten patients (aged 37-76 years; 7 males, 3 females) were studied with electrophysiologically proven CIP. The median nerve was stimulated at the wrist and compound action potentials were recorded from abductor pollicis brevis muscle. Strength-duration time constant, threshold electrotonus, current-threshold relationship and recovery cycle (refractoriness, superexcitability and late subexcitability) were recorded using a recently described protocol. In eight patients a follow-up investigation was performed. All patients underwent clinical examination and laboratory investigations. Compared with age-matched normal controls (20 subjects; aged 38-79 years; 7 males, 13 females), CIP patients exhibited reduced superexcitability at 7 ms, from -22.3 +/- 1.6% to -7.6 +/- 3.1% (mean +/- SE, P approximately 0.0001) and increased accommodation to depolarizing (P < 0.01) and hyperpolarizing currents (P < 0.01), indicating membrane depolarization. Superexcitability was reduced both in patients with renal failure and without renal failure. In the former, superexcitability correlated with serum potassium (R = 0.88), and late subexcitability was also reduced (as also occurs owing to hyperkalaemia in patients with chronic renal failure). In patients without renal failure, late subexcitability was normal, and the signs of membrane depolarization correlated with raised serum bicarbonate and base excess, indicating compensated respiratory acidosis. It is inferred that motor axons in these CIP patients are depolarized, in part because of raised extracellular potassium, and in part because of hypoperfusion. The chronic membrane depolarization may contribute to the development of neuropathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the feasibility of obtaining a spatially resolved picture of Ca2+Ca2+ inward currents (ICaICa) in multicellular cardiac tissue by differentiating optically recorded Ca2+Ca2+ transients that accompany propagating action potentials. Patterned growth strands of neonatal rat ventricular cardiomyocytes were stained with the Ca2+Ca2+ indicators Fluo-4 or Fluo-4FF. Preparations were stimulated at 1 Hz, and Ca2+Ca2+ transients were recorded with high spatiotemporal resolution (50  μm50  μm, 2 kHz analog bandwidth) with a photodiode array. Signals were differentiated after appropriate digital filtering. Differentiation of Ca2+Ca2+ transients resulted in optically recorded calcium currents (ORCCs) that carried the temporal and pharmacological signatures of L-type Ca2+Ca2+ inward currents: the time to peak amounted to ∼2.1  ms∼2.1  ms (Fluo-4FF) and ∼2.4  ms∼2.4  ms (Fluo-4), full-width at half-maximum was ∼8  ms∼8  ms, and ORCCs were completely suppressed by 50  μmol/L50  μmol/LCdCl2CdCl2. Also, and as reported before from patch-clamp studies, caffeine reversibly depressed the amplitude of ORCCs. The results demonstrate that the differentiation of Ca2+Ca2+ transients can be used to obtain a spatially resolved picture of the initial phase of ICaICa in cardiac tissue and to assess relative changes of activation/fast inactivation of ICaICa following pharmacological interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Episodic ataxia type 1 is a neuronal channelopathy caused by mutations in the KCNA1 gene encoding the fast K(+) channel subunit K(v)1.1. Episodic ataxia type 1 presents with brief episodes of cerebellar dysfunction and persistent neuromyotonia and is associated with an increased incidence of epilepsy. In myelinated peripheral nerve, K(v)1.1 is highly expressed in the juxtaparanodal axon, where potassium channels limit the depolarizing afterpotential and the effects of depolarizing currents. Axonal excitability studies were performed on patients with genetically confirmed episodic ataxia type 1 to characterize the effects of K(v)1.1 dysfunction on motor axons in vivo. The median nerve was stimulated at the wrist and compound muscle action potentials were recorded from abductor pollicis brevis. Threshold tracking techniques were used to record strength-duration time constant, threshold electrotonus, current/threshold relationship and the recovery cycle. Recordings from 20 patients from eight kindreds with different KCNA1 point mutations were compared with those from 30 normal controls. All 20 patients had a history of episodic ataxia and 19 had neuromyotonia. All patients had similar, distinctive abnormalities: superexcitability was on average 100% higher in the patients than in controls (P < 0.00001) and, in threshold electrotonus, the increase in excitability due to a depolarizing current (20% of threshold) was 31% higher (P < 0.00001). Using these two parameters, the patients with episodic ataxia type 1 and controls could be clearly separated into two non-overlapping groups. Differences between the different KCNA1 mutations were not statistically significant. Studies of nerve excitability can identify K(v)1.1 dysfunction in patients with episodic ataxia type 1. The simple 15 min test may be useful in diagnosis, since it can differentiate patients with episodic ataxia type 1 from normal controls with high sensitivity and specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of membrane microdomains (rafts) have been postulated to be present in the rear and front of polarized migrating T-lymphocytes. Disruption of rafts by cholesterol sequestration prevents T-cell polarization and migration. Reggie/flotillin-1 and -2 are two highly homologous proteins that are thought to shape membrane microdomains. We have previously demonstrated the enrichment of flotillins in the uropod of human neutrophils. We have now investigated mechanisms involved in chemokine-induced flotillin reorganization in human T-lymphocytes, and possible roles of flotillins in lymphocyte polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The herb Echinacea purpurea, also called purple coneflower, is regarded as an immune modulator. This study examined changes in cytokine production in blood samples from 30 volunteers before and during 8-day oral administration with an ethanolic extract of fresh Echinacea purpurea (Echinaforce(®)). Daily blood samples were ex vivo stimulated by LPS/SEB or Zymosan and analysed for a series of cytokines and haematological and metabolic parameters. Treatment reduced the proinflammatory mediators TNF-α and IL-1β by up to 24% (p<0.05) and increased anti-inflammatory IL-10 levels by 13% (p<0.05) in comparison to baseline. This demonstrated a substantial overall anti-inflammatory effect of Echinaforce(®) for the whole group (n=28). Chemokines MCP-1 and IL-8 were upregulated by 15% in samples from subjects treated with Echinaforce(®) (p<0.05). An analysis of a subgroup of volunteers who showed low pre-treatment levels of the cytokines MCP-1, IL-8, IL-10 or IFN-γ (n=8) showed significant stimulation of these factors upon Echinaforce(®) treatment (30-49% increases; p<0.05), whereas the levels in subjects with higher pre-treatment levels remained unaffected. We chose the term "adapted immune-modulation" to describe this observation. Volunteers who reported high stress levels (n=7) and more than 2 colds per year experienced a significant transient increase in IFN-γ upon Echinaforce(®) treatment (>50%). Subjects with low cortisol levels (n=11) showed significant down-regulation of the acute-phase proteins IL1-β, IL-6, IL-12 and TNF-α by Echinaforce(®) (range, 13-25%), while subjects with higher cortisol levels showed no such down-regulation. This is the first ex vivo study to demonstrate adapted immune-modulation by an Echinacea preparation. While Echinaforce(®) did not affect leukocyte counts, we speculate that the underlying therapeutic mechanism is based on differential multi-level modulation of the responses of the different types of leukocytes. Echinaforce(®) thus regulates the production of chemokines and cytokines according to current immune status, such as responsiveness to exogenous stimuli, susceptibility to viral infection and exposure to stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Throughout follicular growth and subsequent corpus luteum formation the leukocyte number increases and follicular vascularisation changes. These processes are enhanced under exogenous stimulation with gonadotropins. Cytokines released by leukocytes contribute to further recruitment and vascularisation of the follicle, and they play an important role in regulating ovarian steroidogenesis by influencing theca and granulosa–lutein cell function. Changes in cytokine and vascular endothelial growth factor (VEGF) concentrations in the ovary as a consequence of gonadotropin stimulation may negatively influence oocyte quality. In this project we have compared the intrafollicular production of inflammatory cytokines and growth factors between natural IVF cycles (NC) and classical, gonadotropin-stimulated IVF cycles (gsIVF). Material and Methods: Serum on the day of oocyte retrieval and follicular fluid (FF) were collected in 37 NC and 39 gsIVF cycles. Thirteen women within this population underwent one NC and one gsIVF cycle each. A total of 14 cytokines from Bio-Plex panels I and II were determined in matched serum and FF samples using Luminex xMAP technology on the Bio-Plex(R) platform, using the serum protocol. Results: Tumour necrosis factor-alpha, RANTES, eotaxin and interferon-gamma-induced protein-10 levels were lower in FF than in serum, and thus not further investigated. Interleukin (IL)-6, -8, -10, -15, -18, monocyte chemotactic protein-1 (MCP-1), VEGF and leukaemia inhibitory factor (LIF) showed higher median concentrations in FF than in serum, indicating possible ovarian production. Moreover, most of these showed higher evels in the gsIVF than in the NC groups in the serum, but not in the follicular fluid. IL-8 was reduced in gsIVF cycles. Conclusion: The fact that serum but not FF levels of the studied cytokines were higher in the stimulated than in the natural cycles can be attributed to the increased number of active follicles present after controlled ovarian stimulation.