44 resultados para theory and modeling
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objective: Significant others are central to patients' experience and management of their cancer illness. Building on our validation of the Distress Thermometer (DT) for family members, this investigation examines individual and collective distress in a sample of cancer patients and their matched partners, accounting for the aspects of gender and role. Method: Questionnaires including the DT were completed by a heterogeneous sample of 224 couples taking part in a multisite study. Results: Our investigation showed that male patients (34.2%), female patients (31.9%), and male partners (29.1%) exhibited very similar levels of distress, while female partners (50.5%) exhibited much higher levels of distress according to the DT. At the dyad level just over half the total sample contained at least one individual reporting significant levels of distress. Among dyads with at least one distressed person, the proportion of dyads where both individuals reported distress was greatest (23.6%). Gender and role analyses revealed that males and females were not equally distributed among the four categories of dyads (i.e. dyads with no distress; dyads where solely the patient or dyads where solely the partner is distressed; dyads where both are distressed). Conclusion: A remarkable number of dyads reported distress in one or both partners. Diverse patterns of distress within dyads suggest varying risks of psychosocial strain. Screening patients' partners in addition to patients themselves may enable earlier identification of risk settings. The support offered to either member of such dyads should account for their role- and gender-specific needs. Copyright © 2010 John Wiley ; Sons, Ltd.
Resumo:
The hERG voltage-gated potassium channel mediates the cardiac I(Kr) current, which is crucial for the duration of the cardiac action potential. Undesired block of the channel by certain drugs may prolong the QT interval and increase the risk of malignant ventricular arrhythmias. Although the molecular determinants of hERG block have been intensively studied, not much is known about its stereoselectivity. Levo-(S)-bupivacaine was the first drug reported to have a higher affinity to block hERG than its enantiomer. This study strives to understand the principles underlying the stereoselectivity of bupivacaine block with the help of mutagenesis analyses and molecular modeling simulations. Electrophysiological measurements of mutated hERG channels allowed for the identification of residues involved in bupivacaine binding and stereoselectivity. Docking and molecular mechanics simulations for both enantiomers of bupivacaine and terfenadine (a non-stereoselective blocker) were performed inside an open-state model of the hERG channel. The predicted binding modes enabled a clear depiction of ligand-protein interactions. Estimated binding affinities for both enantiomers were consistent with electrophysiological measurements. A similar computational procedure was applied to bupivacaine enantiomers towards two mutated hERG channels (Tyr652Ala and Phe656Ala). This study confirmed, at the molecular level, that bupivacaine stereoselectively binds the hERG channel. These results help to lay the foundation for structural guidelines to optimize the cardiotoxic profile of drug candidates in silico.