5 resultados para thallium salts

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption interactions of thallium and its compounds with gold and quartz surfaces were investigated. Carrier-free amounts of thallium were produced in nuclear fusion reactions of alpha particles with thick gold targets. The method chosen for the studies was gas thermochromatography and varying the redox potential of the carrier gases. It was observed that thallium is extremely sensitive to trace amounts of oxygen and water, and can even be oxidized by the hydroxyl groups located on the quartz surface. The experiments on a quartz surface with O2, He, H2 gas in addition with water revealed the formation and deposition of only one thallium species – TlOH. The adsorption enthalpy was determined to be Δ HSiO2ads(TlOH) = −134 ± 5 kJ mol−1. A series of experiments using gold as stationary surface and different carrier gases resulted in the detection of two thallium species – metallic Tl (H2 as carrier gas) and TlOH (O2, O2+H2O and H2+H2O as pure carrier gas or carrier gas mixture) with Δ HAuads(Tl) = −270 ± 10 kJ mol− and Δ HAuads(TlOH) = −146 ± 3 kJ mol−1. These data demonstrate a weak interaction of TlOH with both quartz and gold surfaces. The data represent important information for the design of future experiments with the heavier homologue of Tl in group 13 of the periodic table – element 113 (E113).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.