4 resultados para textured insoles

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60% of variation in PLFA data and 81% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34%) and enzyme activities (60%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale. (C) 2013 Elsevier B.V: All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyroxenes constitute an important component in mafic igneous and metamorphic rocks. They often possess a prismatic habit, and their long axis, the crystallographic c axis, helps define a lineation in a textured rock. Anisotropy of magnetic susceptibility (AMS) serves as a fabric indicator in igneous and metamorphic rocks. If a rock’s AMS is carried by pyroxenes, it can be related to their crystallographic preferred orientation and degree of alignment. This requires knowing the intrinsic AMS of pyroxene single crystals. This study provides a comprehensive low-field and high-field AMS investigation of chemically diverse orthopyroxene and clinopyroxene crystals in relation to crystal structure, chemical composition, oxidation state of Fe, and the possible presence of ferromagnetic inclusions. The paramagnetic anisotropy, extracted from high-field data, shows clear relationships to crystallographic directions and Fe concentration both in clinopyroxene and orthopyroxene. In the diopside-augite series, the intermediate susceptibility is parallel to b, and the maximum is at 45° to the c axis. In aegirine, the intermediate axis remains parallel to b, while the maximum susceptibility is parallel to c. The AMS of spodumene depends on Fe concentration. In enstatite, the maximum susceptibility aligns with c and the minimum with b, and in the case of hypersthene, the maximum susceptibility is normal to the exsolution lamellae. Magnetite inclusions within augite possess a ferromagnetic anisotropy with consistent orientation of the principal susceptibilities, which dominates the low-field anisotropy. These results provide better understanding of magnetic anisotropy in pyroxenes and form a solid basis for interpretation of magnetic fabrics in pyroxene-bearing rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tishomingo is a chemically and structurally unique iron with 32.5 wt.% Ni that contains 20% residual taenite and 80% martensite plates, which formed on cooling to between -75 and -200 °C, probably the lowest temperature recorded by any meteorite. Our studies using transmission (TEM) and scanning electron microscopy (SEM), X-ray microanalysis (AEM) and electron backscatter diffraction (EBSD) show that martensite plates in Tishomingo formed in a single crystal of taenite and decomposed during reheating forming 10-100 nm taenite particles with ∼50 wt.% Ni, kamacite with ∼4 wt.%Ni, along with martensite or taenite with 32 wt.% Ni. EBSD data and experimental constraints show that Tishomingo was reheated to 320-400 °C for about a year transforming some martensite to kamacite and to taenite particles and some martensite directly to taenite without composition change. Fizzy-textured intergrowths of troilite, kamacite with 2.7 wt.% Ni and 2.6 wt.% Co, and taenite with 56 wt.% Ni and 0.15 wt.% Co formed by localized shock melting. A single impact probably melted the sub-mm sulfides, formed stishovite, and reheated and decomposed the martensite plates. Tishomingo and its near-twin Willow Grove, which has 28 wt.% Ni, differ from IAB-related irons like Santa Catharina and San Cristobal that contain 25-36 wt.% Ni, as they are highly depleted in moderately volatile siderophiles and enriched in Ir and other refractory elements. Tishomingo and Willow Grove therefore resemble IVB irons but are chemically distinct. The absence of cloudy taenite in these two irons shows that they cooled through 250 °C abnormally fast at >0.01 °C/yr. Thus this grouplet, like the IVA and IVB irons, suffered an early impact that disrupted their parent body when it was still hot. Our noble gas data show that Tishomingo was excavated from its parent body about 100 to 200 Myr ago and exposed to cosmic rays as a meteoroid with a radius of ∼50-85 cm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities. 2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan. 3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls. 4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals. 5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.