6 resultados para tensor analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
New treatment options for Niemann-Pick Type C (NPC) have recently become available. To assess the efficiency and efficacy of these new treatment markers for disease status and progression are needed. Both the diagnosis and the monitoring of disease progression are challenging and mostly rely on clinical impression and functional testing of horizontal eye movements. Diffusion tensor imaging (DTI) provides information about the microintegrity especially of white matter. We show here in a case report how DTI and measures derived from this imaging method can serve as adjunct quantitative markers for disease management in Niemann-Pick Type C. Two approaches are taken--first, we compare the fractional anisotropy (FA) in the white matter globally between a 29-year-old NPC patient and 18 healthy age-matched controls and show the remarkable difference in FA relatively early in the course of the disease. Second, a voxelwise comparison of FA values reveals where white matter integrity is compromised locally and demonstrate an individualized analysis of FA changes before and after 1year of treatment with Miglustat. This method might be useful in future treatment trials for NPC to assess treatment effects.
Resumo:
Heschl's gyrus (HG) is functionally involved in the genesis of auditory verbal hallucinations (AVH). This dysfunction seems to be structurally facilitated. The aim of the study was to analyze macrostructural features of HG in a group of patients reporting AVH who demonstrated white matter diffusion tensor imaging abnormalities reported previously.
Resumo:
Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.
Resumo:
Hereditary spastic paraplegia (HSP) associated with thin corpus callosum is a rare autosomal recessive neurodegenerative disorder characterized by an abnormally thin corpus callosum, normal motor development, slowly progressive spastic paraparesis and cognitive deterioration. To investigate and localize abnormalities in the brains of two Chinese patients with HSP-TCC, with mutations in the spatacsin gene. Diffusion tensor imaging (DTI) was used to determine the mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patients in comparison to 20 healthy subjects. Voxel-based analysis (VBA) of both the diffusion and anisotropy values were performed using statistical parametric mapping (SPM). Significant changes with MD increase and FA reduction were found in the already known lesions including the corpus callosum, cerebellum and thalamus. In addition, changes were also found in regions that appear to be normal in conventional MRI, such as the brain stem, internal capsule, cingulum and subcortical white matter including superior longitudinal fascicle and inferior longitudinal fascicle. Neither increase in FA nor reduction in MD was detected in the brain. Our study provides clear in vivo MR imaging evidence of a more widespread brain involvement of HSP-TCC. MD is more sensitive than FA in detecting lesions in thalamus and subcortical white matter, suggesting that MD may be a better marker of the disease progression.
Resumo:
Previous MRI-volumetric studies in schizophrenic psychoses have demonstrated more or less pronounced volume reductions of the hippocampus in patients. Correspondingly, neuropathological examinations on the brains of schizophrenics showed diverse structural changes of the hippocampus. Employing a high-resolution 3D-MPRAGE sequence, we found volume reductions in most hippocampal subregions of schizophrenic patients, which, however, did not reach significant levels. An analysis of co-registered diffusion tensor imaging (DTI) data revealed significant alterations of the inter-voxel coherences in single hippocampal subdivisions of these patients, supporting the assumption of characteristic microstructural tissue changes relevant for the pathogenesis of schizophrenic psychoses. Our results argue for the usage of additional MRI modalities like DTI in order to detect subtle regional alterations of hippocampal structure in schizophrenics.
Resumo:
BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.