5 resultados para teleost fish
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.
Resumo:
Thyroid hormones are involved in modulating the immune system in mammals. In contrast, there is no information on the role played by these hormones in the immune system of teleost fish. Here we provide initial evidence for the presence of active thyroid signaling in immune organs and cells of teleosts. We demonstrate that immune organs (head kidney and spleen) and isolated leukocytes (from head kidney and peripheral blood) of the rainbow trout (Oncorhynchus mykiss) express both thyroid receptor α (THRA) and β (THRB). Absolute mRNA levels of THRA were significantly higher than those of THRB. THRA showed higher expression in immune organs and isolated immune cells compared to the reference organ, liver, while THRB showed the opposite. In vivo exposure of trout to triiodothryronine (T3) or the anti-thyroid agent propylthiouracil (PTU) altered THR expression in immune organs and cells. Effect of T3 and PTU over the relative expression of selected marker genes of immune cell subpopulations was also studied. Treatments changed the relative expression of markers of cytotoxic, helper and total T cells (cd4, cd8a, trb), B lymphocytes (mIgM) and macrophages (csf1r). These findings suggest that the immune system of rainbow trout is responsive to thyroid hormones.
Resumo:
The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.
Resumo:
Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.
Resumo:
Numerous environmental chemicals, both long-known toxicants such as persistent organic pollutants as well as emerging contaminants such as pharmaceuticals, are known to modulate immune parameters of wildlife species, what can have adverse consequences for the fitness of individuals including their capability to resist pathogen infections. Despite frequent field observations of impaired immunocompetence and increased disease incidence in contaminant-exposed wildlife populations, the potential relevance of immunotoxic effects for the ecological impact of chemicals is rarely considered in ecotoxicological risk assessment. A limiting factor in the assessment of immunotoxic effects might be the complexity of the immune system what makes it difficult (1) to select appropriate exposure and effect parameters out of the many immune parameters which could be measured, and (2) to evaluate the significance of the selected parameters for the overall fitness and immunocompetence of the organism. Here, we present - on the example of teleost fishes - a brief discussion of how to assess chemical impact on the immune system using parameters at different levels of complexity and integration: immune mediators, humoral immune effectors, cellular immune defenses, macroscopical and microscopical responses of lymphoid tissues and organs, and host resistance to pathogens. Importantly, adverse effects of chemicals on immunocompetence may be detectable only after immune system activation, e.g., after pathogen challenge, but not in the resting immune system of non-infected fish. Current limitations to further development and implementation of immunotoxicity assays and parameters in ecotoxicological risk assessment are not primarily due to technological constraints, but are related from insufficient knowledge of (1) possible modes of action in the immune system, (2) the importance of intra- and inter-species immune system variability for the response against chemical stressors, and (3) deficits in conceptual and mechanistic assessment of combination effects of chemicals and pathogens.