220 resultados para targeted ultrasound
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Ultrasound-guided techniques are increasingly used in anaesthetic practice to identify tissues beneath the skin and to increase the accuracy of placement of needles close to targeted structures. To examine ultrasound's usefulness for dilatational tracheostomy, we performed ultrasound-guided tracheal punctures in human cadavers followed by computer-tomographic (CT) control.
Resumo:
Ultrasound is an emerging new imaging and guiding technique for diagnostic or therapeutic interventional pain procedures. Advantages are the real time monitoring of the targeted structures, the placement of the instruments and the visualization of local anaesthetic spread without exposing patients and personal to radiation. Pain specialists need a large anatomical knowledge and training to use the new method safely and distinctively. The increasing published data available and the personal experience of the authors suggest a potential usefulness in interventional pain therapy, but also limitations.
Resumo:
BACKGROUND: Ilioinguinal and iliohypogastric nerve blocks may be used in the diagnosis of chronic groin pain or for analgesia for hernia repair. This study describes a new ultrasound-guided approach to these nerves and determines its accuracy using anatomical dissection control. METHODS: After having tested the new method in a pilot cadaver, 10 additional embalmed cadavers were used to perform 37 ultrasound-guided blocks of the ilioinguinal and iliohypogastric nerve. After injection of 0.1 ml of dye the cadavers were dissected to evaluate needle position and colouring of the nerves. RESULTS: Thirty-three of the thirty-seven needle tips were located at the exact target point, in or directly at the ilioinguinal or iliohypogastric nerve. In all these cases the targeted nerve was coloured entirely. In two of the remaining four cases parts of the nerves were coloured. This corresponds to a simulated block success rate of 95%. In contrast to the standard 'blind' techniques of inguinal nerve blocks we visualized and targeted the nerves 5 cm cranial and posterior to the anterior superior iliac spine. The median diameters of the nerves measured by ultrasound were: ilioinguinal 3.0x1.6 mm, and iliohypogastric 2.9x1.6 mm. The median distance of the ilioinguinal nerve to the iliac bone was 6.0 mm and the distance between the two nerves was 10.4 mm. CONCLUSIONS: The anatomical dissections confirmed that our new ultrasound-guided approach to the ilioinguinal and iliohypogastric nerve is accurate. Ultrasound could become an attractive alternative to the 'blind' standard techniques of ilioinguinal and iliohypogastric nerve block in pain medicine and anaesthetic practice.
Resumo:
Sonography is an established diagnostic procedure in hospitals, but is not routinely used in prehospital emergency medicine. Several studies have addressed the use of ultrasound during helicopter flights and in emergency rooms, few in prehospital settings, but most focused on abdominal blunt trauma. Several case reports describe crucial decisions distinguished by ultrasound.
Resumo:
Paravertebral regional anaesthesia is used to treat pain after several surgical procedures. This study aimed to improve on our first published ultrasound-guided approach to the paravertebral space (PVS) and to investigate a possible discrepancy between the needle, catheter, and contrast dye position.
Resumo:
Performing spermatic cord block for scrotal surgery avoids the potential risks of neuraxial and general anaesthesia and provides long-lasting postoperative analgesia. A blindly performed block is often inefficient and bears its own potential risks (intravascular injection of local anaesthetics, haematoma formation and perforation of the deferent duct). The use of ultrasound may help to overcome these disadvantages. The aim of this study was to test the feasibility and monitor the success rate of a new ultrasound-guided spermatic cord block.
Resumo:
BACKGROUND: Local anaesthetic blocks of the greater occipital nerve (GON) are frequently performed in different types of headache, but no selective approaches exist. Our cadaver study compares the sonographic visibility of the nerve and the accuracy and specificity of ultrasound-guided injections at two different sites. METHODS: After sonographic measurements in 10 embalmed cadavers, 20 ultrasound-guided injections of the GON were performed with 0.1 ml of dye at the classical site (superior nuchal line) followed by 20 at a newly described site more proximal (C2, superficial to the obliquus capitis inferior muscle). The spread of dye and coloration of nerve were evaluated by dissection. RESULTS: The median sonographic diameter of the GON was 4.2 x 1.4 mm at the classical and 4.0 x 1.8 mm at the new site. The nerves were found at a median depth of 8 and 17.5 mm, respectively. In 16 of 20 in the classical approach and 20 of 20 in the new approach, the nerve was successfully coloured with the dye. This corresponds to a block success rate of 80% (95% confidence interval: 58-93%) vs 100% (95% confidence interval: 86-100%), which is statistically significant (McNemar's test, P=0.002). CONCLUSIONS: Our findings confirm that the GON can be visualized using ultrasound both at the level of the superior nuchal line and C2. This newly described approach superficial to the obliquus capitis inferior muscle has a higher success rate and should allow a more precise blockade of the nerve.
Resumo:
Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during imageguided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative
Resumo:
This paper presents methods based on Information Filters for solving matching problems with emphasis on real-time, or effectively real-time applications. Both applications discussed in this work deal with ultrasound-based rigid registration in computer-assisted orthopedic surgery. In the first application, the usual workflow of rigid registration is reformulated such that registration algorithms would iterate while the surgeon is acquiring ultrasound images of the anatomy to be operated. Using this effectively real-time approach to registration, the surgeon would then receive feedback in order to better gauge the quality of the final registration outcome. The second application considered in this paper circumvents the need to attach physical markers to bones for anatomical referencing. Experiments using anatomical objects immersed in water are performed in order to evaluate and compare the different methods presented herein, using both 2D as well as real-time 3D ultrasound.
Resumo:
In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.
Resumo:
Owing to its optimal nuclear properties, ready availability, low cost and favourable dosimetry, (99m)Tc continues to be the ideal radioisotope for medical-imaging applications. Bifunctional chelators based on a tetraamine framework exhibit facile complexation with Tc(V)O(2) to form monocationic species with high in vivo stability and significant hydrophilicity, which leads to favourable pharmacokinetics. The synthesis of a series of 1,4,8,11-tetraazaundecane derivatives (01-06) containing different functional groups at the 6-position for the conjugation of biomolecules and subsequent labelling with (99m)Tc is described herein. The chelator 01 was used as a starting material for the facile synthesis of chelators functionalised with OH (02), N(3) (04) and O-succinyl ester (05) groups. A straightforward and easy synthesis of carboxyl-functionalised tetraamine-based chelator 06 was achieved by using inexpensive and commercially available starting materials. Conjugation of 06 to a potent bombesin-antagonist peptide and subsequent labelling with (99m)Tc afforded the radiotracer (99m)Tc-N4-BB-ANT, with radiolabelling yields of >97% at a specific activity of 37 GBq micromol(-1). An IC(50) value of (3.7+/-1.3) nM was obtained, which confirmed the high affinity of the conjugate to the gastrin-releasing-peptide receptor (GRPr). Immunofluorescence and calcium mobilisation assays confirmed the strong antagonist properties of the conjugate. In vivo pharmacokinetic studies of (99m)Tc-N4-BB-ANT showed high and specific uptake in PC3 xenografts and in other GRPr-positive organs. The tumour uptake was (22.5+/-2.6)% injected activity per gram (% IA g(-1)) at 1 h post injection (p.i.). and increased to (29.9+/-4.0)% IA g(-1) at 4 h p.i. The SPECT/computed tomography (CT) images showed high tumour uptake, clear background and negligible radioactivity in the abdomen. The promising preclinical results of (99m)Tc-N4-BB-ANT warrant its potential candidature for clinical translation.