4 resultados para systems design

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: To validate the Probability of Repeated Admission (Pra) questionnaire, a widely used self-administered tool for predicting future healthcare use in older persons, in three European healthcare systems. DESIGN: Prospective study with 1-year follow-up. SETTING: Hamburg, Germany; London, United Kingdom; Canton of Solothurn, Switzerland. PARTICIPANTS: Nine thousand seven hundred thirteen independently living community-dwelling people aged 65 and older. MEASUREMENTS: Self-administered eight-item Pra questionnaire at baseline. Self-reported number of hospital admissions and physician visits during 1 year of follow-up. RESULTS: In the combined sample, areas under the receiver operating characteristic curves (AUCs) were 0.64 (95% confidence interval (CI)=0.62-0.66) for the prediction of one or more hospital admissions and 0.68 (95% CI=0.66-0.69) for the prediction of more than six physician visits during the following year. AUCs were similar between sites. In comparison, prediction models based on a person's age and sex alone exhibited poor predictive validity (AUC or= 0.5) were 2.3 times as likely (95% CI=2.1-2.6) as low-risk individuals to have a hospital admission, and 2.1 times as likely (95% CI=2.0-2.2) to have more than six physician visits. CONCLUSION: The Pra instrument exhibits good validity for predicting future health service use on a population level in different healthcare settings. Administrative data have shown similar predictive validity, but in practice, such data are often not available. The Pra is likely of high interest to governments and health insurance companies worldwide as a basis for programs aimed at health risk management in older persons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.