7 resultados para system improvements

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Critical incident reporting alone does not necessarily improve patient safety or even patient outcomes. Substantial improvement has been made by focusing on the further two steps of critical incident monitoring, that is, the analysis of critical incidents and implementation of system changes. The system approach to patient safety had an impact on the view about the patient's role in safety. This review aims to analyse recent advances in the technique of reporting, the analysis of reported incidents, and the implementation of actual system improvements. It also explores how families should be approached about safety issues. RECENT FINDINGS: It is essential to make as many critical incidents as possible known to the intensive care team. Several factors have been shown to increase the reporting rate: anonymity, regular feedback about the errors reported, and the existence of a safety climate. Risk scoring of critical incident reports and root cause analysis may help in the analysis of incidents. Research suggests that patients can be successfully involved in safety. SUMMARY: A persisting high number of reported incidents is anticipated and regarded as continuing good safety culture. However, only the implementation of system changes, based on incident reports, and also involving the expertise of patients and their families, has the potential to improve patient outcome. Hard outcome criteria, such as standardized mortality ratio, have not yet been shown to improve as a result of critical incident monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new implantable hearing system, the direct acoustic cochlear stimulator (DACS) is presented. This system is based on the principle of a power-driven stapes prosthesis and intended for the treatment of severe mixed hearing loss due to advanced otosclerosis. It consists of an implantable electromagnetic transducer, which transfers acoustic energy directly to the inner ear, and an audio processor worn externally behind the implanted ear. The device is implanted using a specially developed retromeatal microsurgical approach. After removal of the stapes, a conventional stapes prosthesis is attached to the transducer and placed in the oval window to allow direct acoustical coupling to the perilymph of the inner ear. In order to restore the natural sound transmission of the ossicular chain, a second stapes prosthesis is placed in parallel to the first one into the oval window and attached to the patient's own incus, as in a conventional stapedectomy. Four patients were implanted with an investigational DACS device. The hearing threshold of the implanted ears before implantation ranged from 78 to 101 dB (air conduction, pure tone average, 0.5-4 kHz) with air-bone gaps of 33-44 dB in the same frequency range. Postoperatively, substantial improvements in sound field thresholds, speech intelligibility as well as in the subjective assessment of everyday situations were found in all patients. Two years after the implantations, monosyllabic word recognition scores in quiet at 75 dB improved by 45-100 percent points when using the DACS. Furthermore, hearing thresholds were already improved by the second stapes prosthesis alone by 14-28 dB (pure tone average 0.5-4 kHz, DACS switched off). No device-related serious medical complications occurred and all patients have continued to use their device on a daily basis for over 2 years. Copyright (c) 2008 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signal to noise ratio for rooms with realistic reverberation and more than 18 dB under anechoic conditions. Speech understanding in noise is measured in 6 adult cochlear implant users in a reverberant room, showing average improvements of 7.9–9.6 dB, when compared to a single omnidirectional microphone or 1.3–5.6 dB, when compared to a simple directional two-microphone device. Subjective evaluation in a cafeteria at lunchtime shows a preference of the cochlear implant users for the evaluated device in terms of speech understanding and sound quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for low-mass planets. These new observations require improving planet formation models, including new physics, and considering the formation of systems. Aims: In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the effect, in terms of architecture and composition of this multiplicity. Methods: We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. Results: We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0 to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations show that, when considering planets more massive than ~5 M⊕, simulations with 10 or 20 planetary embryos statistically give the same results in terms of mass function and period distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebrovascular diseases are significant causes of death and disability in humans. Improvements in diagnostic and therapeutic approaches strongly rely on adequate gyrencephalic, large animal models being demanded for translational research. Ovine stroke models may represent a promising approach but are currently limited by insufficient knowledge regarding the venous system of the cerebral angioarchitecture. The present study was intended to provide a comprehensive anatomical analysis of the intracranial venous system in sheep as a reliable basis for the interpretation of experimental results in such ovine models. We used corrosion casts as well as contrast-enhanced magnetic resonance venography to scrutinize blood drainage from the brain. This combined approach yielded detailed and, to some extent, novel findings. In particular, we provide evidence for chordae Willisii and lateral venous lacunae, and report on connections between the dorsal and ventral sinuses in this species. For the first time, we also describe venous confluences in the deep cerebral venous system and an 'anterior condylar confluent' as seen in humans. This report provides a detailed reference for the interpretation of venous diagnostic imaging findings in sheep, including an assessment of structure detectability by in vivo (imaging) versus ex vivo (corrosion cast) visualization methods. Moreover, it features a comprehensive interspecies-comparison of the venous cerebral angioarchitecture in man, rodents, canines and sheep as a relevant large animal model species, and describes possible implications for translational cerebrovascular research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress toward elucidating the 3D structures of eukaryotic membrane proteins has been hampered by the lack of appropriate expression systems. Recent work using the Xenopus oocyte as a novel expression system for structural analysis demonstrates the capability of providing not only the significant amount of protein yields required for structural work but also the expression of eukaryotic membrane proteins in a more native and functional conformation. There is a long history using the oocyte expression system as an efficient tool for membrane transporter and channel expression in direct functional analysis, but improvements in robotic injection systems and protein yield optimization allow the rapid scalability of expressed proteins to be purified and characterized in physiologically relevant structural states. Traditional overexpression systems (yeast, bacteria, and insect cells) by comparison require chaotropic conditions over several steps for extraction, solubilization, and purification. By contrast, overexpressing within the oocyte system for subsequent negative-staining transmission electron microscopy studies provides a single system that can functionally assess and purify eukaryotic membrane proteins in fewer steps maintaining the physiological properties of the membrane protein.