24 resultados para swd: Zen-Buddhismus
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu(+) to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro. Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.
Resumo:
Generalised epileptic seizures are frequently accompanied by sudden, reversible transitions from low amplitude, irregular background activity to high amplitude, regular spike-wave discharges (SWD) in the EEG. The underlying mechanisms responsible for SWD generation and for the apparently spontaneous transitions to SWD and back again are still not fully understood. Specifically, the role of spatial cortico-cortical interactions in ictogenesis is not well studied. We present a macroscopic, neural mass model of a cortical column which includes two distinct time scales of inhibition. This model can produce both an oscillatory background and a pathological SWD rhythm. We demonstrate that coupling two of these cortical columns can lead to a bistability between out-of-phase, low amplitude background dynamics and in-phase, high amplitude SWD activity. Stimuli can cause state-dependent transitions from background into SWD. In an extended local area of cortex, spatial heterogeneities in a model parameter can lead to spontaneous reversible transitions from a desynchronised background to synchronous SWD due to intermittency. The deterministic model is therefore capable of producing absence seizure-like events without any time dependent adjustment of model parameters. The emergence of such mechanisms due to spatial coupling demonstrates the importance of spatial interactions in modelling ictal dynamics, and in the study of ictogenesis.
Resumo:
Mutations in CLCN1, the gene encoding the ClC-1 chloride channel in skeletal muscle, lead to myotonia congenita. The effects on the intramembranous channel forming domains have been investigated more than that at the intracellular C-terminus. We have performed a mutation screen involving the whole CLCN1 gene of patients with myotonia congenita by polymerase chain reaction (PCR), single-strand conformation polymorphism studies, and sequencing. Two unrelated patients harbored the same homozygous G-to-T mutation on the donor splice site of intron 17. This led to the skipping of exon 17, as evidenced by the reverse transcriptase PCR. When the exon 17-deleted CLCN1 was expressed in Xenopus oocytes, no chloride current was measurable. This function could be restored by coexpression with the wild-type channel. Our data suggest an important role of this C-terminal region and that exon 17 skipping resulting from a homozygous point mutation in CLCN1 can lead to recessive myotonia congenita.
Resumo:
Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.