6 resultados para surface topography measurement

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prosthetic and osteosynthetic implants from metal alloys will be indispensable in orthopedic surgery, as long as tissue engineering and biodegradable bone substitutes do not lead to products that will be applied in clinical routine for the repair of bone, cartilage, and joint defects. Therefore, the elucidation of the interactions between the periprosthetic tissues and the implant remains of clinical relevance and several factors are known to affect the longevity of implants. Within this study, the effects of metal particles and surface topography on the recruitment of osteoclasts was investigated in vitro in a coculture of osteoblasts and bone marrow cells. The cells were grown in the presence of particles of different sizes and chemical composition or on metal discs with polished or sandblasted surfaces, respectively. At the end of the culture, newly formed osteoclasts were counted. Osteoclastogenesis was reduced when particles were added directly to the coculture. The effect depended on the size of the particles, small particles exerting stronger effects than larger ones. The chemical composition of the particles, however, did not affect the development of osteoclasts. In cocultures grown on sandblasted surfaces, osteoclasts developed at higher rates than they did in cultures on polished surfaces. The data demonstrate that wear particles and implant surfaces affect osteoclastogenesis and thus may be involved in the induction of local bone resorption and the formation of osteolytic lesions, leading eventually to the loosening of orthopedic implants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The planning of refractive surgical interventions is a challenging task. Numerical modeling has been proposed as a solution to support surgical intervention and predict the visual acuity, but validation on patient specific intervention is missing. The purpose of this study was to validate the numerical predictions of the post-operative corneal topography induced by the incisions required for cataract surgery. The corneal topography of 13 patients was assessed preoperatively and postoperatively (1-day and 30-day follow-up) with a Pentacam tomography device. The preoperatively acquired geometric corneal topography – anterior, posterior and pachymetry data – was used to build patient-specific finite element models. For each patient, the effects of the cataract incisions were simulated numerically and the resulting corneal surfaces were compared to the clinical postoperative measurements at one day and at 30-days follow up. Results showed that the model was able to reproduce experimental measurements with an error on the surgically induced sphere of 0.38D one day postoperatively and 0.19D 30 days postoperatively. The standard deviation of the surgically induced cylinder was 0.54D at the first postoperative day and 0.38D 30 days postoperatively. The prediction errors in surface elevation and curvature were below the topography measurement device accuracy of ±5μm and ±0.25D after the 30-day follow-up. The results showed that finite element simulations of corneal biomechanics are able to predict post cataract surgery within topography measurement device accuracy. We can conclude that the numerical simulation can become a valuable tool to plan corneal incisions in cataract surgery and other ophthalmosurgical procedures in order to optimize patients' refractive outcome and visual function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microinjection molding was employed to fabricate low-cost polymer cantilever arrays for sensor applications. Cantilevers with micrometer dimensions and aspect ratios as large as 10 were successfully manufactured from polymers, including polypropylene and polyvinylidenfluoride. The cantilevers perform similar to the established silicon cantilevers, with Q-factors in the range of 10–20. Static deflection of gold coated polymer cantilevers was characterized with heat cycling and self-assembled monolayer formation of mercaptohexanols. A hybrid mold concept allows easy modification of the surface topography, enabling customized mechanical properties of individual cantilevers. Combined with functionalization and surface patterning, the cantilever arrays are qualified for biomedical applications

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The liquid–vapor interface is difficult to access experimentally but is of interest from a theoretical and applied point of view and has particular importance in atmospheric aerosol chemistry. Here we examine the liquid–vapor interface for mixtures of water, sodium chloride, and formic acid, an abundant chemical in the atmosphere. We compare the results of surface tension and X-ray photoelectron spectroscopy (XPS) measurements over a wide range of formic acid concentrations. Surface tension measurements provide a macroscopic characterization of solutions ranging from 0 to 3 M sodium chloride and from 0 to over 0.5 mole fraction formic acid. Sodium chloride was found to be a weak salting out agent for formic acid with surface excess depending only slightly on salt concentration. In situ XPS provides a complementary molecular level description about the liquid–vapor interface. XPS measurements over an experimental probe depth of 51 Å gave the C 1s to O 1s ratio for both total oxygen and oxygen from water. XPS also provides detailed electronic structure information that is inaccessible by surface tension. Density functional theory calculations were performed to understand the observed shift in C 1s binding energies to lower values with increasing formic acid concentration. Part of the experimental −0.2 eV shift can be assigned to the solution composition changing from predominantly monomers of formic acid to a combination of monomers and dimers; however, the lack of an appropriate reference to calibrate the absolute BE scale at high formic acid mole fraction complicates the interpretation. Our data are consistent with surface tension measurements yielding a significantly more surface sensitive measurement than XPS due to the relatively weak propensity of formic acid for the interface. A simple model allowed us to replicate the XPS results under the assumption that the surface excess was contained in the top four angstroms of solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Implants made of commercially pure titanium (cpTi) are widely and successfully used in dentistry. For certain indications, diameter-reduced Ti alloy implants with improved mechanical strength are highly desirable. The aim was to compare the osseointegration of titanium-zirconium (TiZr) and cpTi implants with a modified sandblasted and acid-etched (SLActive) surface and with a Ti6Al4V alloy that was sand-blasted and acid-washed. Cylindrical implants with two, 0.75 mm deep, circumferential grooves were placed in the maxilla of miniature pigs and allowed to heal for 1, 2, 4 and 8 weeks. Undecalcified toluidine blue-stained ground sections were produced. Surface topography, area fraction of tissue components, and bone-to-implant contact (BIC) were determined. All materials showed significantly different surface roughness parameters. The amount of new bone within the implant grooves increased over time, without significant differences between materials. However, BIC values were significantly related to the implant material and the healing period. For TiZr and cpTi implants, the BIC increased over time, reaching values of 59.38 % and 76.15 % after 2 weeks, and 74.50 % and 84.67 % after 8 weeks, respectively. In contrast, the BIC for Ti6Al4V implants peaked with 42.29 % after 2 weeks followed by a decline to 28.60 % at 8 weeks. Significantly more surface was covered by multinucleated giant cells on Ti6Al4V implants after 4 and 8 weeks. In conclusion, TiZr and cpTi implants showed faster osseointegration than Ti6Al4V implants. Both chemistry and surface topography might have influenced the results. The use of diameter-reduced TiZr implants in more challenging clinical situations warrants further documentation in long-term clinical studies.