2 resultados para stx 2

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Only a subset of Shiga toxin (Stx)-producing Escherichia coli (STEC) are human pathogens, but the characteristics that account for differences in pathogenicity are not well understood. In this study, we investigated the distribution of the stx variants coding for Stx2 and its variants in highly virulent STEC of seropathotype A and low-pathogenic STEC of seropathotype C. We analysed and compared transcription of the corresponding genes, production of Shiga toxins, and stx-phage release in basal as well as in induced conditions. We found that the stx(2) variant was mainly associated with strains of seropathotype A, whereas most of the strains of seropathotype C possessed the stx(2-vhb) variant, which was frequently associated with stx(2), stx(2-vha) or stx(2c). Levels of stx(2) and stx(2)-related mRNA were higher in strains belonging to seropathotype A and in those strains of seropathotype C that express the stx(2) variant than in the remaining strains of seropathotype C. The stx(2-vhb) genes were the least expressed, in basal as well as in induced conditions, and in many cases did not seem to be carried by an inducible prophage. A clear correlation was observed between stx mRNA levels and stx-phage DNA in the culture supernatants, suggesting that most stx(2)-related genes are expressed only when they are carried by a phage. In conclusion, some relationship between stx(2)-related gene expression in vitro and the seropathotype of the STEC strains was observed. A higher expression of the stx(2) gene and a higher release of its product, in basal as well as in induced conditions, was observed in pathogenic strains of seropathotype A. A subset of strains of seropathotype C shows the same characteristics and could be a high risk to human health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.