6 resultados para strong electronic excitation effect

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined spectroscopic and ab initio theoretical study of the doubly hydrogen-bonded complex of 2-pyridone (2PY) with NH3 has been performed. The S-1 <- S-0 spectrum extends up to approximate to 1200 cm(-1) above the 0(0)(0) band, close to twice the range observed for 2PY. The S-1 state nonradiative decay for vibrations above approximate to 300 cm(-1) in the NH3 complex is dramatically slowed down relative to bare 2PY. Also, the Delta v=2,4,... overtone bands of the v(1)' and v(2)' out-of-plane vibrations that dominate the low-energy spectral region of 2PY are much weaker or missing for 2PY center dot NH3, which implies that the bridging (2PY)NH center dot center dot center dot NH3 and H2NH center dot center dot center dot O=C H-bonds clamp the 2PY at a planar geometry in the S-1 state. The mass-resolved UV vibronic spectra of jet-cooled 2PY center dot NH3 and its H/D mixed isotopomers are measured using two-color resonant two-photon ionization spectroscopy. The S-0 and S-1 equilibrium structures and normal-mode frequencies are calculated by density functional (B3LYP) and correlated ab initio methods (MP2 and approximate second-order coupled-cluster, CC2). The S-1 <- S-0 vibronic assignments are based on configuration interaction singles (CIS) and CC2 calculations. A doubly H-bonded bridged structure of C-S symmetry is predicted, in agreement with that of Held and Pratt [J. Am. Chem. Soc. 1993, 115, 9718]. While the B3LYP and MP2 calculated rotational constants are in very good agreement with experiment, the calculated H2NH center dot center dot center dot O=C H-bond distance is approximate to 0.7 angstrom shorter than that derived by Held and Pratt. On the other hand, this underlines their observation that ammonia can act as a strong H-bond donor when built into an H-bonded bridge. The CC2 calculations predict the H2NH center dot center dot center dot O distance to increase by 0.2 angstrom upon S-1 <- S-0 electronic excitation, while the (2PY)NH center dot center dot center dot NH3 H-bond remains nearly unchanged. Thus, the expansion of the doubly H-bonded bridge in the excited state is asymmetric and almost wholly due to the weakening of the interaction of ammonia with the keto acceptor group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The S0 ↔ S1 spectra of the mild charge-transfer (CT) complexes perylene·tetrachloroethene (P·4ClE) and perylene·(tetrachloroethene)2 (P·(4ClE)2) are investigated by two-color resonant two-photon ionization (2C-R2PI) and dispersed fluorescence spectroscopy in supersonic jets. The S0 → S1 vibrationless transitions of P·4ClE and P·(4ClE)2 are shifted by δν = −451 and −858 cm–1 relative to perylene, translating to excited-state dissociation energy increases of 5.4 and 10.3 kJ/mol, respectively. The red shift is ∼30% larger than that of perylene·trans-1,2-dichloroethene; therefore, the increase in chlorination increases the excited-state stabilization and CT character of the interaction, but the electronic excitation remains largely confined to the perylene moiety. The 2C-R2PI and fluorescence spectra of P·4ClE exhibit strong progressions in the perylene intramolecular twist (1au) vibration (42 cm–1 in S0 and 55 cm–1 in S1), signaling that perylene deforms along its twist coordinate upon electronic excitation. The intermolecular stretching (Tz) and internal rotation (Rc) vibrations are weak; therefore, the P·4ClE intermolecular potential energy surface (IPES) changes little during the S0 ↔ S1 transition. The minimum-energy structures and inter- and intramolecular vibrational frequencies of P·4ClE and P·(4ClE)2 are calculated with the dispersion-corrected density functional theory (DFT) methods B97-D3, ωB97X-D, M06, and M06-2X and the spin-consistent-scaled (SCS) variant of the approximate second-order coupled-cluster method, SCS-CC2. All methods predict the global minima to be π-stacked centered coplanar structures with the long axis of tetrachloroethene rotated by τ ≈ 60° relative to the perylene long axis. The calculated binding energies are in the range of −D0 = 28–35 kJ/mol. A second minimum is predicted with τ ≈ 25°, with ∼1 kJ/mol smaller binding energy. Although both monomers are achiral, both the P·4ClE and P·(4ClE)2 complexes are chiral. The best agreement for adiabatic excitation energies and vibrational frequencies is observed for the ωB97X-D and M06-2X DFT methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recurrent interaction among orientation-selective neurons in the primary visual cortex (V1) is suited to enhance contours in a noisy visual scene. Motion is known to have a strong pop-up effect in perceiving contours, but how motion-sensitive neurons in V1 support contour detection remains vastly elusive. Here we suggest how the various types of motion-sensitive neurons observed in V1 should be wired together in a micro-circuitry to optimally extract contours in the visual scene. Motion-sensitive neurons can be selective about the direction of motion occurring at some spot or respond equally to all directions (pandirectional). We show that, in the light of figure-ground segregation, direction-selective motion neurons should additively modulate the corresponding orientation-selective neurons with preferred orientation orthogonal to the motion direction. In turn, to maximally enhance contours, pandirectional motion neurons should multiplicatively modulate all orientation-selective neurons with co-localized receptive fields. This multiplicative modulation amplifies the local V1-circuitry among co-aligned orientation-selective neurons for detecting elongated contours. We suggest that the additive modulation by direction-specific motion neurons is achieved through synaptic projections to the somatic region, and the multiplicative modulation by pandirectional motion neurons through projections to the apical region of orientation-specific pyramidal neurons. For the purpose of contour detection, the V1-intrinsic integration of motion information is advantageous over a downstream integration as it exploits the recurrent V1-circuitry designed for that task.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of our study was to compare the effect of dual-energy subtraction and bone suppression software alone and in combination with computer-aided detection (CAD) on the performance of human observers in lung nodule detection.