57 resultados para strain and stress distribution
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
The taxonomic and phylogenetic status of Echinococcus granulosus strains are still controversial and under discussion. In the present study, we investigated the genetic polymorphism of E. granulosus isolates originating from three countries of Africa, including a region of Algeria, where the common G1 sheep and the camel G6 strains coexist sympatrically. Seventy-one hydatid cysts were collected from sheep, cattle, camels, and humans. Two mitochondrial markers (cox1 and nad1) were used for strain identification. Two nuclear markers (actII and hbx2) were used to study the possible occurrence of cross-fertilization. Despite the heterogeneity observed among the G1 isolates, they were all localized within one robust cluster. A second strong cluster was also observed containing all of the G6 isolates. Both strains appeared as two distinct groups, and no cases of interbreeding were found. Thus, the attribution of a species rank can be suggested. We also found the Tasmanian sheep G2 strain for the first time in Africa. Because of the slight variations observed between the common sheep and the Tasmanian sheep strains, further studies should be carried out to elucidate the epidemiological relevance of this genetic discrimination.
Resumo:
To characterize the zonal distribution of three-dimensional (3D) T1 mapping in the hip joint of asymptomatic adult volunteers.
Resumo:
The experimental verification of matrix diffusion in crystalline rocks largely relies on indirect methods performed in the laboratory. Such methods are prone to perturbations of the rock samples by collection and preparation and therefore the laboratory-derived transport properties and fluid composition might not represent in situ conditions. We investigated the effects induced by the drilling process and natural rock stress release by mass balance considerations and sensitivity analysis of analytical out-diffusion data obtained from originally saturated, large-sized drillcore material from two locations drilled using traced drilling fluid. For in situ stress-released drillcores of quartz-monzodiorite composition from the Aspo HRL, Sweden, tracer mass balance considerations and 1D and 2D diffusion modelling consistently indicated a contamination of <1% of the original pore water. This chemically disturbed zone extends to a maximum of 0.1 mm into the drillcore (61.8 mm x 180.1 mm) corresponding to about 0.66% of the total pore volume (0.77 vol.%). In contrast, the combined effects of stress release and the drilling process, which have influenced granodioritic drillcore material from 560 m below surface at Forsmark. Sweden, resulted in a maximum contamination of the derived porewater Cl(-) concentration of about 8%. The mechanically disturbed zone with modified diffusion properties covers the outermost similar to 6 mm of the drillcore (50 mm x 189 mm), whereas the chemically disturbed zone extends to a maximum of 0.3 mm based on mass balance considerations, and to 0.15 mm to 0.2 mm into the drillcore based on fitting the observed tracer data. This corresponds to a maximum of 2.4% of the total pore volume (0.62 vol.%) being affected by the drilling-fluid contamination. The proportion of rock volume affected initially by drilling fluid or subsequently with experiment water during the laboratory diffusion and re-saturation experiments depends on the size of the drillcore material and will become larger the smaller the sample used for the experiment. The results are further in support of matrix diffusion taking place in the undisturbed matrix of crystalline rocks at least in the cm range.
Resumo:
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
OBJECTIVE: Aim of the study was to correlate urethral retro resistance pressure with the maximum urethral closure pressure (MUCP) and functional urethral length (FUL) in patients with urinary incontinence and healthy individuals. STUDY DESIGN: Two hundred and twenty patients with the complaint of urinary incontinence had a urodynamic examination including urethral pressure profiles and URP. Additionally, 15 healthy individuals without the complaint of any incontinence had their URP and urethral pressure profiles measured. The correlation of MUCP, FUL and URP were calculated using Graph Pad Instat 4.0 for windows. RESULTS: URP correlates well with the diagnosis of urodynamic stress incontinence. Correlation coefficient between URP and MUCP is 0.9262. Healthy individuals have significantly higher values for URP and MUCP. CONCLUSION: URP is a valuable less invasive test than conventional urethral function tests for the diagnosis of urodynamic incontinence with an excellent correlation of MUCP and URP.
Resumo:
OX7 monoclonal antibody F((ab')2) fragments directed against Thy1.1 antigen can be used for drug targeting by coupling to the surface of drug-loaded liposomes. Such OX7-conjugated immunoliposomes (OX7-IL) were used recently for drug delivery to rat glomerular mesangial cells, which are characterized by a high level of Thy1.1 antigen expression. In the present study, the relationship between OX7-IL tissue distribution and target Thy1.1 antigen localization in different organs in rat was investigated. Western blot and immunohistofluorescence analysis revealed a very high Thy1.1 expression in brain cortex and striatum, thymus and renal glomeruli. Moderate Thy1.1 levels were observed in the collecting ducts of kidney, lung tissue and spleen. Thy1.1 was not detected in liver and heart. There was a poor correlation between Thy1.1 expression levels and organ distribution of fluorescence- or (14)C-labeled OX7-IL. The highest overall organ density of OX7-IL was observed in the spleen, followed by lung, liver and kidney. Heart and brain remained negative. With respect to intra-organ distribution, a localized and distinct signal was observed in renal glomerular mesangial cells only. As a consequence, acute pharmacological (i.e. toxic) effects of doxorubicin-loaded OX7-IL were limited to renal glomeruli. The competition with unbound OX7 monoclonal antibody F((ab')2) fragments demonstrated that the observed tissue distribution and acute pharmacological effects of OX7-IL were mediated specifically by the conjugated OX7 antibody. It is concluded that both the high target antigen density and the absence of endothelial barriers are needed to allow for tissue-specific accumulation and pharmacological effects of OX7-IL. The liposomal drug delivery strategy used is therefore specific toward renal glomeruli and can be expected to reduce the risk of unwanted side effects in other tissues.