65 resultados para stingless bee
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The application of non-invasive imaging technologies using X-radiation (diagnostic radioentomology, ‘DR’) is demonstrated for the study of amber-entombed social bees. Here, we examine the external and internal morphology of an Early Miocene (Burdigalian) stingless bee (Apinae: Meliponini) from the Dominican Republic using non-destructive X-ray microtomography analysis. The study permits the accurate reconstruction of features otherwise obscured or impossible to visualize without destroying the sample and allows diagnosis of the specimen as a new species, Proplebeia adbita Greco and Engel.
Resumo:
Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.
Resumo:
Apiculturists have recently been confronted with drastic and inexplicable winter losses of colonies, and virus infections may be involved. Here, we surveyed 337 Swiss honey bee colonies in the winter of 2005 and 2006 and categorized their health status as: 1. dead (= no or few live bees left); 2. weak (= dwindling, high mortality of adult bees); or 3. healthy (= normal overwintering colony). From each colony, pooled adult workers were analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV) and Kashmir bee virus (KBV). Neither KBV nor CBPV were found, but significantly higher ABPV and DWV infections were found in dead vs. weak vs. healthy colonies (except DWV in 2006 between weak and healthy). Moreover, ABPV and DWV loads were positively correlated with each other. This is the first report demonstrating statistically significant correlations between viruses associated with Varroa destructor and winter mortality.
Resumo:
Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9 5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae The two strains, labelled `Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation
Resumo:
It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.
Resumo:
The ectoparasitic mite Varroa destructor acting as a virus vector constitutes a central mechanism for losses of managed honey bee, Apis mellifera, colonies. This creates demand for an easy, accurate and cheap diagnostic tool to estimate the impact of viruliferous mites in the field. Here we evaluated whether the clinical signs of the ubiquitous and mite-transmitted deformed wing virus (DWV) can be predictive markers of winter losses. In fall and winter 2007/2008, A.m. carnica workers with apparent wing deformities were counted daily in traps installed on 29 queenright colonies. The data show that colonies which later died had a significantly higher proportion of workers with wing deformities than did those which survived. There was a significant positive correlation between V. destructor infestation levels and the number of workers displaying DWV clinical signs, further supporting the mite's impact on virus infections at the colony level. A logistic regression model suggests that colony size, the number of workers with wing deformities and V. destructor infestation levels constitute predictive markers for winter colony losses in this order of importance and ease of evaluation.