40 resultados para steroid 5alpha reductase

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 oxidoreductase (POR) supplies electrons from NADPH to steroid and drug metabolizing reactions catalyzed by the cytochrome P450s located in endoplasmic reticulum. Mutations in human POR cause a wide spectrum of disease ranging from disordered steroidogenesis to sexual differentiation. Previously we and others have shown that POR mutations can lead to reduced activities of steroidogenic P450s CYP17A1, CYP19A1 and CYP21A1. Here we are reporting that mutations in the FMN binding domain of POR may reduce CYP3A4 activity, potentially influencing drug and steroid metabolism; and the loss of CYP3A4 activity may be correlated to the reduction of cytochrome b(5) by POR. Computational molecular docking experiments with a FMN free structural model of POR revealed that an external FMN could be docked in close proximity to the FAD moiety and receive electrons donated by NADPH. Using FMN supplemented assays we have demonstrated restoration of the defective POR activity in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by a) the metabolites of the fetal-placental unit at birth, b) the fetal adrenal androgens until its involution 3-6 months postnatally, and c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is abundantly expressed in the nervous system and acts on target cells through NPY receptors. The human adrenal cortex and adrenal tumors express NPY receptor subtype Y1, but its function is unknown. We studied Y1-mediated signaling, steroidogenesis and cell proliferation in human adrenal NCI-H295R cells. Radioactive ligand binding studies showed that H295R cells express Y1 receptor specifically. NPY treatment of H295R cells stimulated the MEK/ERK1/2 pathway, confirming that H295R cells express functional Y1 receptors. Studies of the effect of NPY and related peptide PYY on adrenal steroidogenesis revealed a decrease in 11-deoxycortisol production. RIA measurements of cortisol from cell culture medium confirmed this finding. Co-treatment with the Y1 antagonist BIBP2336 reversed the inhibitory effect of NPY on cortisol production proving specificity of this effect. At mRNA level, NPY decreased HSD3B2 and CYP21A2 expression. However NPY revealed no effect on cell proliferation. Our data show that NPY can directly regulate human adrenal cortisol production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study identified the peroxisome proliferator-activated receptor alpha (PPARalpha) activation biomarkers 21-steroid carboxylic acids 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11beta,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARalpha-specific time-dependent increases in HDOPA and 20alpha-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARalpha induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARalpha and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARalpha activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20alpha-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARalpha resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies support the notion that statins, widely prescribed cholesterol-lowering agents, may target key elements in the immunological cascade leading to inflammation and tissue damage in the pathogenesis of multiple sclerosis (MS). Compelling experimental and observational clinical studies highlighted the possibility that statins may also exert immunomodulatory synergy with approved MS drugs, resulting in several randomized clinical trials testing statins in combination with interferon-beta (IFN-?). Some data, however, suggest that this particular combination may not be clinically beneficial, and might actually have a negative effect on the disease course in some patients with MS. In this regard, a small North American trial indicated that atorvastatin administered in combination with IFN-? may increase disease activity in relapsing-remitting MS. Although other trials did not confirm this finding, the enthusiasm for studies with statins dwindled. This review aims to provide a comprehensive overview of the completed clinical trials and reports of the interim analyses evaluating the combination of IFN-? and statins in MS. Moreover, we try to address the evident question whether usage of this combination routinely requires caution, since the number of IFN-?-treated MS patients receiving statins for lowering of cholesterol is expected to grow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 11-year-old girl presented with sudden sensory disturbance and left-sided muscle weakness. MRI revealed ischaemic change in the right lateral thalamus and the right internal capsule. During sonographic work-up of the cervical arteries, inflammation of the thyroid gland was noted. The results of the thyroid function tests and antibody titers confirmed Hashimoto thyroidits. Under high-dose corticosteroids, the girl had a full neurological recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although systemic corticosteroids are successfully administered for the induction of clinical response and remission in the majority of patients with inflammatory bowel disease (IBD) presenting with a flare, a proportion of these patients demonstrate a primary nonresponse to steroids or in the case of an initial response, they develop a resistance or a steroid dependence. Long-term therapy with corticosteroids for treatment of IBD should be avoided, given the high frequency of adverse treatment effects. Knowledge about treatment strategies in case of steroid nonresponse is therefore highly relevant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.