22 resultados para statistical methods
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The talk starts out with a short introduction to the philosophy of probability. I highlight the need to interpret probabilities in the sciences and motivate objectivist accounts of probabilities. Very roughly, according to such accounts, ascriptions of probabilities have truth-conditions that are independent of personal interests and needs. But objectivist accounts are pointless if they do not provide an objectivist epistemology, i.e., if they do not determine well-defined methods to support or falsify claims about probabilities. In the rest of the talk I examine recent philosophical proposals for an objectivist methodology. Most of them take up ideas well-known from statistics. I nevertheless find some proposals incompatible with objectivist aspirations.
Resumo:
The objective of this study was to develop a criteria catalogue serving as a guideline for authors to improve quality of reporting experiments in basic research in homeopathy. A Delphi Process was initiated including three rounds of adjusting and phrasing plus two consensus conferences. European researchers who published experimental work within the last 5 years were involved. A checklist for authors provide a catalogue with 23 criteria. The “Introduction” should focus on underlying hypotheses, the homeopathic principle investigated and state if experiments are exploratory or confirmatory. “Materials and methods” should comprise information on object of investigation, experimental setup, parameters, intervention and statistical methods. A more detailed description on the homeopathic substances, for example, manufacture, dilution method, starting point of dilution is required. A further result of the Delphi process is to raise scientists' awareness of reporting blinding, allocation, replication, quality control and system performance controls. The part “Results” should provide the exact number of treated units per setting which were included in each analysis and state missing samples and drop outs. Results presented in tables and figures are as important as appropriate measures of effect size, uncertainty and probability. “Discussion” in a report should depict more than a general interpretation of results in the context of current evidence but also limitations and an appraisal of aptitude for the chosen experimental model. Authors of homeopathic basic research publications are encouraged to apply our checklist when preparing their manuscripts. Feedback is encouraged on applicability, strength and limitations of the list to enable future revisions.
Resumo:
The present study investigates the relation of perceived arousal (continuous self-rating), autonomic nervous system activity (heart rate, heart rate variability) and musical characteristics (sound intensity, musical rhythm) upon listening to a complex musical piece. Twenty amateur musicians listened to two performances of Chopin's "Tristesse" with different rhythmic shapes. Besides conventional statistical methods for analyzing psychophysiological reactions (heart rate, respiration rate) and musical variables, semblance analysis was used. Perceived arousal correlated strongly with sound intensity; heart rate showed only a partial response to changes in sound intensity. Larger changes in heart rate were caused by the version with more rhythmic tension. The low-/high-frequency ratio of heart rate variability increased-whereas the high frequency component decreased-during music listening. We conclude that autonomic nervous system activity can be modulated not only by sound intensity but also by the interpreter's use of rhythmic tension. Semblance analysis enables us to track the subtle correlations between musical and physiological variables.
Resumo:
[1] Instrumental temperature series are often affected by artificial breaks (“break points”) due to (e.g.,) changes in station location, land-use, or instrumentation. The Swiss climate observation network offers a high number and density of stations, many long and relatively complete daily to sub-daily temperature series, and well-documented station histories (i.e., metadata). However, for many climate observation networks outside of Switzerland, detailed station histories are missing, incomplete, or inaccessible. To correct these records, the use of reliable statistical break detection methods is necessary. Here, we apply three statistical break detection methods to high-quality Swiss temperature series and use the available metadata to assess the methods. Due to the complex terrain in Switzerland, we are able to assess these methods under specific local conditions such as the Foehn or crest situations. We find that the temperature series of all stations are affected by artificial breaks (average = 1 break point / 48 years) with discrepancies in the abilities of the methods to detect breaks. However, by combining the three statistical methods, almost all of the detected break points are confirmed by metadata. In most cases, these break points are ascribed to a combination of factors in the station history.
Resumo:
INTRODUCTION: Liver cirrhosis develops only in a minority of heavy drinkers. Genetic factors may account for some variation in the progression of fibrosis in alcoholic liver disease (ALD). Transforming growth factor beta 1 (TGFbeta1) is a key profibrogenic cytokine in fibrosis and its gene contains several polymorphic sites. A single nucleotide polymorphism at codon 25 has been suggested to affect fibrosis progression in patients with chronic hepatitis C virus infection, fatty liver disease, and hereditary hemochromatosis. Its contribution to the progression of ALD has not been investigated sufficiently so far. PATIENTS AND METHODS: One-hundred-and-fifty-one heavy drinkers without apparent ALD, 149 individuals with alcoholic cirrhosis, and 220 alcoholic cirrhotics who underwent liver transplantation (LTX) were genotyped for TGFbeta1 codon 25 variants. RESULTS: Univariate analysis suggested that genotypes Arg/Pro or Pro/Pro are associated with decompensated liver cirrhosis requiring LTX. However, after adjusting for patients' age these genotypes did not confer a significant risk for cirrhosis requiring LTX. CONCLUSION: TGFbeta1 codon 25 genotypes Arg/Pro or Pro/Pro are not associated with alcoholic liver cirrhosis. Our study emphasizes the need for adequate statistical methods and accurate study design when evaluating the contribution of genetic variants to the course of chronic liver diseases.
Resumo:
OBJECTIVES: The STAndards for Reporting studies of Diagnostic accuracy (STARD) for investigators and editors and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) for reviewers and readers offer guidelines for the quality and reporting of test accuracy studies. These guidelines address and propose some solutions to two major threats to validity: spectrum bias and test review bias. STUDY DESIGN AND SETTING: Using a clinical example, we demonstrate that these solutions fail and propose an alternative solution that concomitantly addresses both sources of bias. We also derive formulas that prove the generality of our arguments. RESULTS: A logical extension of our ideas is to extend STARD item 23 by adding a requirement for multivariable statistical adjustment using information collected in QUADAS items 1, 2, and 12 and STARD items 3-5, 11, 15, and 18. CONCLUSION: We recommend reporting not only variation of diagnostic accuracy across subgroups (STARD item 23) but also the effects of the multivariable adjustments on test performance. We also suggest that the QUADAS be supplemented by an item addressing the appropriateness of statistical methods, in particular whether multivariable adjustments have been included in the analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.