7 resultados para static random access memory
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Mainstream IDEs such as Eclipse support developers in managing software projects mainly by offering static views of the source code. Such a static perspective neglects any information about runtime behavior. However, object-oriented programs heavily rely on polymorphism and late-binding, which makes them difficult to understand just based on their static structure. Developers thus resort to debuggers or profilers to study the system's dynamics. However, the information provided by these tools is volatile and hence cannot be exploited to ease the navigation of the source space. In this paper we present an approach to augment the static source perspective with dynamic metrics such as precise runtime type information, or memory and object allocation statistics. Dynamic metrics can leverage the understanding for the behavior and structure of a system. We rely on dynamic data gathering based on aspects to analyze running Java systems. By solving concrete use cases we illustrate how dynamic metrics directly available in the IDE are useful. We also comprehensively report on the efficiency of our approach to gather dynamic metrics.
Resumo:
Maintaining object-oriented systems that use inheritance and polymorphism is difficult, since runtime information, such as which methods are actually invoked at a call site, is not visible in the static source code. We have implemented Senseo, an Eclipse plugin enhancing Eclipse's static source views with various dynamic metrics, such as runtime types, the number of objects created, or the amount of memory allocated in particular methods.
Resumo:
The paper argues for a distinction between sensory-and conceptual-information storage in the human information-processing system. Conceptual information is characterized as meaningful and symbolic, while sensory information may exist in modality-bound form. Furthermore, it is assumed that sensory information does not contribute to conscious remembering and can be used only in data-driven process reptitions, which can be accompanied by a kind of vague or intuitive feeling. Accordingly, pure top-down and willingly controlled processing, such as free recall, should not have any access to sensory data. Empirical results from different research areas and from two experiments conducted by the authors are presented in this article to support these theoretical distinctions. The experiments were designed to separate a sensory-motor and a conceptual component in memory for two-digit numbers and two-letter items, when parts of the numbers or items were imaged or drawn on a tablet. The results of free recall and recognition are discussed in a theoretical framework which distinguishes sensory and conceptual information in memory.
Resumo:
This study examined a new type of cognitive intervention. For four weeks, participants (ages 65 to 82) were instructed in professional acting techniques, followed by rehearsal and performance of theatrical scenes. Although the training was not targeted in any way to the tasks used in pre- and post-testing, participants produced significantly higher recall and recognition scores after the intervention. It is suggested that the cognitive effort involved in analyzing and adopting theatrical characters' motivations (and then experiencing those characters' mental/emotional states during performance) is responsible for the observed improvement. A secondary strand of this study showed that participants who were given annotated scripts in which the implied goals of the characters were made explicit demonstrated significantly faster access to the stored material, as measured by a computer latency task.
Resumo:
Background: Semantic memory processes have been well described in literature. However, the available findings are mostly based on relatively young subjects and concrete word material (e.g. tree). Comparatively little information exists about semantic memory for abstract words (e.g. mind) and possible age related changes in semantic retrieval. In this respect, we developed a paradigm that is useful to investigate the implicit (i.e. attentionindependent) access to concrete and abstract semantic memory. These processes were then compared between young and elderly healthy subjects. Methods: A well established tool for investigating semantic memory processes is the semantic priming paradigm, which consists both of semantically unrelated and related word pairs. In our behavioral task these noun-noun word pairs were further divided into concrete, abstract and matched pronounceable non-word conditions. With this premise, the young and elderly participants performed a lexical decision task: they were asked to press a choice of two buttons as an indication for whether the word pair contained a non-word or not. In order to minimize controlled (i.e. attention-dependent) retrieval strategies, a short stimulus onset asynchrony (SOA) of 150ms was set. Reaction time (RT) changes and accuracy to related and unrelated words (priming effect) in the abstract vs. concrete condition (concreteness effect) were the dependent variables of interest. Results and Discussion: Statistical analysis confirmed both a significant priming effect (i.e. shorter RTs in semantically related compared to unrelated words) and a concreteness effect (i.e. RT decrease for concrete compared to abstract words) in the young and elderly subjects. There was no age difference in accuracy. The only age effect was a commonly known general slowing in RT over all conditions. In conclusion, age is not a critical factor in the implicit access to abstract and concrete semantic memory.
Resumo:
gsample draws a random sample from the data in memory. Simple random sampling (SRS) is supported, as well as unequal probability sampling (UPS), of which sampling with probabilities proportional to size (PPS) is a special case. Both methods, SRS and UPS/PPS, provide sampling with replacement and sampling without replacement. Furthermore, stratified sampling and cluster sampling is supported.
Resumo:
While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants (assigned to experimental or control groups) studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the Display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition Memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scenes cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness.