23 resultados para spin-dependent short-range interaction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.
Resumo:
Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice.
Resumo:
Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex, 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.
Resumo:
The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.
Resumo:
Cell competition is the short-range elimination of slow-dividing cells through apoptosis when confronted with a faster growing population. It is based on the comparison of relative cell fitness between neighboring cells and is a striking example of tissue adaptability that could play a central role in developmental error correction and cancer progression in both Drosophila melanogaster and mammals. Cell competition has led to the discovery of multiple pathways that affect cell fitness and drive cell elimination. The diversity of these pathways could reflect unrelated phenomena, yet recent evidence suggests some common wiring and the existence of a bona fide fitness comparison pathway.
Resumo:
The contribution of Starlette, Stella, and AJI-SAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the Z component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the Z geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended.This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking,is very important and needs to be implemented in the SLR data analysis.
Resumo:
We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1 TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.
Resumo:
Determining the role of different precipitation periods for peak discharge generation is crucial for both projecting future changes in flood probability and for short- and medium-range flood forecasting. In this study, catchment-averaged daily precipitation time series are analyzed prior to annual peak discharge events (floods) in Switzerland. The high number of floods considered – more than 4000 events from 101 catchments have been analyzed – allows to derive significant information about the role of antecedent precipitation for peak discharge generation. Based on the analysis of precipitation times series, a new separation of flood-related precipitation periods is proposed: (i) the period 0 to 1 day before flood days, when the maximum flood-triggering precipitation rates are generally observed, (ii) the period 2 to 3 days before flood days, when longer-lasting synoptic situations generate "significantly higher than normal" precipitation amounts, and (iii) the period from 4 days to 1 month before flood days when previous wet episodes may have already preconditioned the catchment. The novelty of this study lies in the separation of antecedent precipitation into the precursor antecedent precipitation (4 days before floods or earlier, called PRE-AP) and the short range precipitation (0 to 3 days before floods, a period when precipitation is often driven by one persistent weather situation like e.g., a stationary low-pressure system). A precise separation of "antecedent" and "peak-triggering" precipitation is not attempted. Instead, the strict definition of antecedent precipitation periods permits a direct comparison of all catchments. The precipitation accumulating 0 to 3 days before an event is the most relevant for floods in Switzerland. PRE-AP precipitation has only a weak and region-specific influence on flood probability. Floods were significantly more frequent after wet PRE-AP periods only in the Jura Mountains, in the western and eastern Swiss plateau, and at the outlet of large lakes. As a general rule, wet PRE-AP periods enhance the flood probability in catchments with gentle topography, high infiltration rates, and large storage capacity (karstic cavities, deep soils, large reservoirs). In contrast, floods were significantly less frequent after wet PRE-AP periods in glacial catchments because of reduced melt. For the majority of catchments however, no significant correlation between precipitation amounts and flood occurrences is found when the last 3 days before floods are omitted in the precipitation amounts. Moreover, the PRE-AP was not higher for extreme floods than for annual floods with a high frequency and was very close to climatology for all floods. The fact that floods are not significantly more frequent nor more intense after wet PRE-AP is a clear indicator of a short discharge memory of Pre-Alpine, Alpine and South Alpine Swiss catchments. Our study poses the question whether the impact of long-term precursory precipitation for floods in such catchments is not overestimated in the general perception. The results suggest that the consideration of a 3–4 days precipitation period should be sufficient to represent (understand, reconstruct, model, project) Swiss Alpine floods.
Resumo:
We consider a three-dimensional effective theory of Polyakov lines derived previously from lattice Yang-Mills theory and QCD by means of a resummed strong coupling expansion. The effective theory is useful for investigations of the phase structure, with a sign problem mild enough to allow simulations also at finite density. In this work we present a numerical method to determine improved values for the effective couplings directly from correlators of 4d Yang-Mills theory. For values of the gauge coupling up to the vicinity of the phase transition, the dominant short range effective coupling are well described by their corresponding strong coupling series. We provide numerical results also for the longer range interactions, Polyakov lines in higher representations as well as four-point interactions, and discuss the growing significance of non-local contributions as the lattice gets finer. Within this approach the critical Yang-Mills coupling β c is reproduced to better than one percent from a one-coupling effective theory on N τ = 4 lattices while up to five couplings are needed on N τ = 8 for the same accuracy.
Resumo:
This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs) using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar) or spin-dependent (axial-vector) couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.
Resumo:
We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t x y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5×10−49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.
Resumo:
Context. The complex shape of comet 67P and its oblique rotation axis cause pronounced seasonal effects. Irradiation and hence activity vary strongly. Aims. We investigate the insolation of the cometary surface in order to predict the sublimation of water ice. The strongly varying erosion levels are correlated with the topography and morphology of the present cometary surface and its evolution. Methods. The insolation as a function of heliocentric distance and diurnal (spin dependent) variation is calculated using >10(5) facets of a detailed digital terrain model. Shading, but also illumination and thermal radiation by facets in the field of view of a specific facet are iteratively taken into account. We use a two-layer model of a thin porous dust cover above an icy surface to calculate the water sublimation, presuming steady state and a uniform surface. Our second model, which includes the history of warming and cooling due to thermal inertia, is restricted to a much simpler shape model but allows us to test various distributions of active areas. Results. Sublimation from a dirty ice surface yields maximum erosion. A thin dust cover of 50 pm yields similar rates at perihelion. Only about 6% of the surface needs to be active to match the observed water production rates at perihelion. A dust layer of 1 mm thickness suppresses the activity by a factor of 4 to 5. Erosion on the south side can reach more than 10 m per orbit at active spots. The energy input to the concave neck area (Hapi) during northern summer is enhanced by about 50% owing to self-illumination. Here surface temperatures reach maximum values along the foot of the Hathor wall. Integrated over the whole orbit this area receives the least energy input. Based on the detailed shape model, the simulations identify "hot spots" in depressions and larger pits in good correlation with observed dust activity. Three-quarters of the total sublimation is produced while the sub-solar latitude is south, resulting in a distinct dichotomy in activity and morphology. Conclusions. The northern areas display a much rougher morphology than what is seen on Imhotep, an area at the equator that will be fully illuminated when 67P is closer to the Sun. Self-illumination in concave regions enhance the energy input and hence erosion. This explains the early activity observed at Hapi. Cliffs are more prone to erosion than horizontal, often dust covered, areas, which leads to surface planation. Local activity can only persist if the forming cliff walls are eroding. Comet 67P has two lobes and also two distinct sides. Transport of material from the south to the north is probable. The morphology of the Imhotep plain should be typical for the terrains of the yet unseen southern hemisphere.
Resumo:
In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.
Resumo:
AIM: To evaluate the outcomes of short (15 minutes) oral hygiene vs. hand hygiene education for preschool children 4 weeks after these interventions. MATERIALS AND METHODS: Sixty-one preschool children (age range 4-6 years) attending four kindergarten classes participated in a 15-minute health education programme on the importance of body cleanliness for general health. In addition, specific instructions on oral hygiene were provided for two randomly selected classes (30 children), while the remaining two classes (31 children) were given instruction of hand and nail cleaning. The oral hygiene status was assessed usingthe plaque control record (PCR). The cleanliness of the hands and fingernails was determined using a hand hygiene index (HHI) and a nail hygiene index (NHI). All three parameters were assessed before the intervention as well as 4 weeks thereafter. RESULTS: Four weeks after education, the PCR had improved for all children from 79.95% to 72.35% (p < 0.001). The NHI had improved from 74.91% to 61.71% (p < 0.001). In addition, the mean PCR of the children given oral hygiene instruction decreased from 83.67% to 72.40%, while the mean PCR of the children given hand and nail cleaning instruction decreased from 76.23% to 72.29% (interaction effect 'time x type of instruction': p = 0.044). Girls' PCR improved significantly more than boys' PCR (Girls, 80.98 vs. 69.71; boys, 78.33 vs. 75.31; p = 0.021). CONCLUSIONS: The results of the study show that even a short, school-based educational intervention at an early age may affect children's oral health promotion significantly. Teachers should, therefore, be encouraged to educate children from an early age about oral hygiene promotion.
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.