62 resultados para spider predation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spiders have one pair of venom glands, and only a few families have reduced them completely (Uloboridae, Holarchaeidae) or modified them to another function (Symphytognathidae or Scytodidae, see Suter and Stratton 2013). All other 42,000 known spider species (99%) utilize their venom to inject it into prey items, which subsequently become paralysed or are killed. Spider venom is a complex mixture of hundreds of components, many of them interacting with cell membranes or receptors located mainly in the nervous or muscular system (Herzig and King 2013). Spider venom, as it is today, has a 300-million-yearlong history of evolution and adaptation and can be considered as an optimized tool to subdue prey. In Mesothelae, the oldest spider group with less than 100 species, the venom glands lie in the anterior part of the cheliceral basal segment. They are very small and do not support the predation process very effectively. In Mygalomorphae, the venom glands are well developed and fill the basal cheliceral segment more or less completely. Many of these 3,000 species are medium- to large-/very large-sized spiders, and they have created the image of being dangerous beasts, attacking and killing a variety of animals, including humans. Although this picture is completely wrong, it is persistent and contributes considerably to human arachnophobia. The third group of spiders, Araneomorphae or “modern spiders”, comprises 93% of all spider species. The venom glands are enlarged and extend to the prosoma; the openings of the venom ducts are moved from the convex to the concave side of the cheliceral fangs and enlarged as well. These changes save the chelicerae from the necessity of being large, and hence, on the average, araneomorph spiders are much smaller than mygalomorphs. Nevertheless, they possess relatively large venom glands, situated mainly in the prosoma, and may also have rather potent venom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel glycine-rich peptides, named ctenidin 1-3, with activity against the Gram-negative bacterium E. coli, were isolated and characterized from hemocytes of the spider Cupiennius salei. Ctenidins have a high glycine content (>70%), similarly to other glycine-rich peptides, the acanthoscurrins, from another spider, Acanthoscurria gomesiana. A combination of mass spectrometry, Edman degradation, and cDNA cloning revealed the presence of three isoforms of ctenidin, at least two of them originating from simple, intronless genes. The full-length sequences of the ctenidins consist of a 19 amino acid residues signal peptide followed by the mature peptides of 109, 119, or 120 amino acid residues. The mature peptides are post-translationally modified by the cleavage of one or two C-terminal cationic amino acid residue(s) and amidation of the newly created mature C-terminus. Tissue expression analysis revealed that ctenidins are constitutively expressed in hemocytes and to a small extent also in the subesophageal nerve mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background We manipulated predation risk in a field experiment with the cooperatively breeding cichlid Neolamprologus pulcher by releasing no predator, a medium- or a large-sized fish predator inside underwater cages enclosing two to three natural groups. We assessed whether helpers changed their helping behaviour, and whether within-group conflict changed, depending on these treatments, testing three hypotheses: ‘pay-to-stay’ PS, ‘risk avoidance’ RA, or (future) reproductive benefits RB. We also assessed whether helper food intake was reduced under risk, because this might reduce investments in other behaviours to save energy. Methodology/Principal Findings Medium and large helpers fed less under predation risk. Despite this effect helpers invested more in territory defence, but not territory maintenance, under the risk of predation (supporting PS). Experimentally covering only the breeding shelter with sand induced more helper digging under predation risk compared to the control treatment (supporting PS). Aggression towards the introduced predator did not differ between the two predator treatments and increased with group member size and group size (supporting PS and RA). Large helpers increased their help ratio (helping effort/breeder aggression received, ‘punishment’ by the dominant pair in the group) in the predation treatments compared to the control treatment, suggesting they were more willing to PS. Medium helpers did not show such effects. Large helpers also showed a higher submission ratio (submission/ breeder aggression received) in all treatments, compared to the medium helpers (supporting PS). Conclusions/Significance We conclude that predation risk reduces helper food intake, but despite this effect, helpers were more willing to support the breeders, supporting PS. Effects of breeder punishment suggests that PS might be more important for large compared to the medium helpers. Evidence for RA was also detected. Finally, the results were inconsistent with RB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from animal and human studies imply the amygdala as the most critical structure involved in processing of fear-relevant stimuli. In phobias, the amygdala seems to play a crucial role in the pathogenesis and maintenance of the disorder. However, the neuropathology of specific phobias remains poorly understood. In the present study, we investigated whether patients with spider phobia show altered amygdala volumes as compared to healthy control subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.