7 resultados para sphingolipids
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In recent years sphingolipids have emerged as important signaling molecules regulating fundamental cell responses such as cell death and differentiation, proliferation and aspects of inflammation. Especially ceramide has been a main focus of research since it possesses pro-apoptotic capacity in many cell types. A counterplayer of ceramide was found in sphingosine-1-phosphate (S1P), which is generated from ceramide by the consecutive actions of ceramidase and sphingosine kinase. S1P can potently induce cell proliferation via binding to and activation of the Edg family of receptors which have now been renamed as S1P receptors. Obviously, a delicate balance between ceramide and sphingosine-1-phosphate determines whether cells undergo apoptosis or proliferate, two cell responses that are critically involved in tumor development. Directing the balance in favor of ceramide, i.e. by inhibiting ceramidase or sphingosine kinase activities may support the pro-apoptotic action of ceramide and thus may have beneficial effects in cancer therapy. This review will summarize novel insights into the regulation of sphingolipid formation and their potential involvement in tumor development. Finally, we will pinpoint potential new targets for tumor therapy.
Resumo:
Sphingolipids not only function as structural components of cell membranes but also act as signaling molecules to regulate fundamental cellular responses, such as cell death and differentiation, proliferation and certain types of inflammation. Particularly the cellular balance between ceramide and sphingosine 1-phosphate seems to be crucial for a cell's decision to either undergo apoptosis or proliferate, two events which are implicated in tumor development and growth. Whereas ceramide possesses proapoptotic capacity in many cell types, sphingosine 1-phosphate acts as a counterplayer able to induce cell proliferation and protect cells from undergoing apoptosis. Therefore, tipping the balance in favour of ceramide production, i.e. by inhibiting ceramidase or sphingosine kinase activities has potential to support its proapoptotic action and hence represents a promising rational approach to effective cancer therapy. This review highlights most recent data on the regulation of cellular sphingolipid formation and their potential implication in tumor development, and provides perspectives for their use as targets in molecular intervention therapy.
Resumo:
Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.
Resumo:
Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.
Resumo:
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca2+ and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca2+-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca2+ sensors and as membrane fusion agents.
Resumo:
The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei.
Resumo:
OBJECTIVE Glycerophospholipids and sphingolipids are structurally heterogeneous due to differences in the O- and N-linked fatty acids and head groups. Sphingolipids also show a heterogeneity in their sphingoid base composition which up to now has been little appreciated. The aim of this study was to investigate the association of certain glycerophospholipid and sphingolipid species with stable coronary artery disease (CAD) and acute myocardial infarction (AMI). METHODS The lipid profile in plasma from patients with stable CAD (n = 18) or AMI (n = 17) was compared to healthy subjects (n = 14). Sixty five glycerophospholipid and sphingolipid species were quantified by LC-MS. The relative distribution of these lipids into lipoprotein fractions was analyzed. RESULTS In the CAD cohort, 45 glycerophospholipid and sphingolipid species were significantly lower compared to healthy controls. In the AMI group, 42 glycerophospholipid and sphingolipid species were reduced. Four PC plasmalogens (PC33:1, PC33:2, PC33:3 and PC35:3) showed the most significant difference. Out of eleven analyzed sphingoid bases, four were lower in the CAD and six in the AMI group. Sphingosine-1-phosphate (S1P) levels were reduced in the AMI group whereas an atypical C16:1 S1P was lower in both groups. Phosphatidylcholine and sphingomyelin species were exclusively present in lipoprotein particles, whereas lysophosphatidylcholines were mainly found in the lipoprotein-free fraction. The observed differences were not explained by the use of statins as confirmed in a second, independent cohort. CONCLUSIONS Reduced levels of four PC plasmalogens (PC33:1, PC33:2, PC33:3 and PC35:3) were identified as a putatively novel lipid signature for CAD and AMI.