77 resultados para sperm donor
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In fetal alloimmune thrombocytopenia (FAIT), transplacental maternal antibodies cause destruction of fetal platelets. FAIT is similar to fetal Rhesus haemolytic disease, but half of the affected fetuses are born to primiparous women. In 10-20% of cases, prenatal and perinatal intracranial haemorrhages are reported. Different therapeutic approaches have been described, including maternally administered high-dose intravenous immunoglobulin (high dose IVIG) without or with steroids or intrauterine transfusion (IUT) of compatible platelets. For the latter, the use of plasma-free maternal and donor platelets has been described, but a comparison of these two sources of platelets has not been reported.
Resumo:
Survivors of childhood acute lymphoblastic leukemia (ALL) treated with radiotherapy are at risk for impaired fertility. Whether chemotherapy alone is also long-term gonadotoxic is unclear. We assessed gonadal function in 11 male ALL-survivors treated with the same chemotherapy regimen and compared sperm analysis to healthy men. While sex hormone levels were normal in all subjects, 5/11 survivors showed pathological sperm concentration and 4/11 a decreased total sperm count compared to WHO criteria. Compared to healthy controls, all quantitative parameters in semen analysis of survivors were decreased. This suggests that treatment with chemotherapeutic agents alone, even in moderate doses, might have a gonadotoxic effect.
Resumo:
To study the influence of tumour necrosis factor (TNF) antagonists on spermatogenesis in a cohort of patients with spondyloarthritis (SpA).
Resumo:
Mating plugs occluding the female gonopore after mating are a widespread phenomenon. In scorpions, two main types of mating plugs are found: sclerotized mating plugs being parts of the spermatophore that break off during mating, and gel-like mating plugs being gelatinous fluids that harden in the female genital tract. In this study, the gel-like mating plug of Euscorpius italicus was investigated with respect to its composition, fine structure, and changes over time. Sperm forms the major component of the mating plug, a phenomenon previously unknown in arachnids. Three parts of the mating plug can be distinguished. The part facing the outside of the female (outer part) contains sperm packages containing inactive spermatozoa. In this state, sperm is transferred. In the median part, the sperm packages get uncoiled to single spermatozoa. In the inner part, free sperm is embedded in a large amount of secretions. Fresh mating plugs are soft gelatinous, later they harden from outside toward inside. This process is completed after 3-5 days. Sperm from artificially triggered spermatophores could be activated by immersion in insect Ringer's solution indicating that the fluid condition in the females' genital tract or females' secretions causes sperm activation. Because of the male origin of the mating plug, it has likely evolved under sperm competition or sexual conflict. As females refused to remate irrespective of the presence or absence of a mating plug, females may have changed their mating behavior in the course of evolution from polyandry to monandry.
Resumo:
Sperm cells are highly vulnerable to free radicals, and sperm quality and male fertility are critically affected by oxidative stress. Recently, sexual ornaments, particularly carotenoid-based colourful traits, have been proposed to depend on a male's capacity to resist oxidative stress, and thus to signal sperm quality. We conducted an experimental test of this hypothesis on great tits Parus major, in which adults are sexually dichromatic in carotenoid-based breast plumage. We report the first evidence that ornaments and sperm quality may be linked through oxidative stress. When experimentally subjected to oxidative stress resulting from increased workload, less colourful males suffered a greater reduction in sperm motility and swimming ability, and increased levels of sperm lipid peroxidation compared to more colourful males. Moreover, the level of sperm lipid peroxidation was negatively correlated with sperm quality. Finally, carotenoid supplementation increased sperm quality of less colourful males, suggesting that pale males are deficient in carotenoid antioxidants.
Resumo:
Sperm competition exerts strong selection on males to produce spermatozoa with an optimal morphology that maximizes their fertilization success. Long sperm were first suggested to be favored because they should swim faster. However, studies that investigated the relationship between sperm length and sperm competitive ability or sperm swimming velocity yielded contradictory results. More recently, ratios of the different sections of a spermatozoon (the head, midpiece, and flagellum) were suggested to be more crucial in determining swimming velocity. Additionally, sperm ability to remain and survive in the female storage organs may also influence fertilization success, so that optimal sperm morphology may rather maximize sperm longevity than velocity. In this study, we investigated how sperm morphology is related to sperm velocity and sperm longevity in the house sparrow Passer domesticus. Sperm velocity was found to be correlated with head/flagellum ratio. Sperm with small heads relative to their flagellum showed higher swimming velocity. Additionally, shorter sperm were found to live longer. Finally, we found sperm morphological traits to vary substantially within males and the head/flagellum ratio to be unrelated to total sperm length. We discuss the hypothesis that the substantial within-male variation in sperm morphology reflects a male strategy to produce a diversity of sperm from long, fast-swimming to short, long-living sperm to maximize their fertilization success in a context of sperm competition.
Donor effect on cortical perfusion intensity in renal allograft recipients: a paired kidney analysis
Resumo:
The contributions of donor- and recipient-related factors to renal allograft hemodynamics are difficult to dissect due to methodological reasons. We analyzed 28 pairs of kidneys (each pair from the same donor) transplanted to 56 different recipients in order to define the contributions of the donor and the recipient to allograft hemodynamics.
Resumo:
The in vivo autologous serum skin test (ASST) is the diagnostic gold standard to detect autoantibodies against FcεRI or IgE itself, as well as other autoreactive serum components, in patients with chronic spontaneous urticaria (CU). Coincubation of patient sera with donor basophils and measuring their degranulation in vitro could be a safe alternative but has shown inconsistent results.
Resumo:
SUMMARY: BACKGROUND: Recruitment of platelets (PLT) during donor PLT apheresis may facilitate the harvest of multiple units within a single donation. METHODS: We compared two PLT apheresis procedures (Amicus and Trima Accel) in a prospective, randomized, paired cross-over study in 60 donors. The 120 donations were compared for depletion of circulating PLT in the donors, PLT yields and PLT recruitment. A recruitment was defined as ratio of total PLT yield and donor PLT depletion > 1. RESULTS: Despite comparable differences of pre- and post-apheresis PLT counts (87 × 10(9)/l in Trima Accel vs. 92 × 10(9)/l in Amicus, p = 0.383), PLT yields were higher with Trima Accel (7.48 × 10(11) vs. 6.06 × 10(11), p < 0.001), corresponding to a higher PLT recruitment (1.90 vs. 1.42, p < 0.001). We observed a different increase of WBC counts after aphereses, which was more pronounced with Trima Accel than with Amicus (1.30 × 10(9)/l vs. 0.46 × 10(9)/l, p < 0.001). CONCLUSION: Both procedures induced PLT recruitment. This was higher in Trima Accel, contributing to a higher yield in spite of a comparable depletion of circulating PLT in the donors. This recruitment facilitates the harvest of multiple units within a single donation and seems to be influenced by the procedure utilized. The different increases of circulating donor white blood cells after donation need further investigation.
Resumo:
In the crystal structure of the title compound (systematic name: 2,3-dichlorobenzene-1,4-diol 2,3-dichlorocyclohexa-2,5-diene-1,4-dione monohydrate), C(6)H(4)Cl(2)O(2)center dot C(6)H(2)Cl(2)O(2)center dot H(2)O, the 2,3-dichloro-1,4-hydroquinone donor (D) and the 2,3-dichloro-1,4-benzoquinone acceptor (A) molecules form alternating stacks along [100]. Their molecular planes [maximum deviations for non-H atoms: 0.0133 (14) (D) and 0.0763 (14) angstrom (A)] are inclined to one another by 1.45 (3)degrees and are thus almost parallel. There are pi-pi interactions involving the D and A molecules, with centroid-centroid distances of 3.5043 (9) and 3.9548 (9) angstrom. Intermolecular O-H center dot center dot center dot O hydrogen bonds involving the water molecule and the hydroxy and ketone groups lead to the formation of two-dimensional networks lying parallel to (001). These networks are linked by C-H center dot center dot center dot O interactions, forming a three-dimensional structure.