3 resultados para speech delay
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Speech melody or prosody subserves linguistic, emotional, and pragmatic functions in speech communication. Prosodic perception is based on the decoding of acoustic cues with a predominant function of frequency-related information perceived as speaker's pitch. Evaluation of prosodic meaning is a cognitive function implemented in cortical and subcortical networks that generate continuously updated affective or linguistic speaker impressions. Various brain-imaging methods allow delineation of neural structures involved in prosody processing. In contrast to functional magnetic resonance imaging techniques, DC (direct current, slow) components of the EEG directly measure cortical activation without temporal delay. Activation patterns obtained with this method are highly task specific and intraindividually reproducible. Studies presented here investigated the topography of prosodic stimulus processing in dependence on acoustic stimulus structure and linguistic or affective task demands, respectively. Data obtained from measuring DC potentials demonstrated that the right hemisphere has a predominant role in processing emotions from the tone of voice, irrespective of emotional valence. However, right hemisphere involvement is modulated by diverse speech and language-related conditions that are associated with a left hemisphere participation in prosody processing. The degree of left hemisphere involvement depends on several factors such as (i) articulatory demands on the perceiver of prosody (possibly, also the poser), (ii) a relative left hemisphere specialization in processing temporal cues mediating prosodic meaning, and (iii) the propensity of prosody to act on the segment level in order to modulate word or sentence meaning. The specific role of top-down effects in terms of either linguistically or affectively oriented attention on lateralization of stimulus processing is not clear and requires further investigations.
Resumo:
OBJECTIVE To analyze speech reading through Internet video calls by profoundly hearing-impaired individuals and cochlear implant (CI) users. METHODS Speech reading skills of 14 deaf adults and 21 CI users were assessed using the Hochmair Schulz Moser (HSM) sentence test. We presented video simulations using different video resolutions (1280 × 720, 640 × 480, 320 × 240, 160 × 120 px), frame rates (30, 20, 10, 7, 5 frames per second (fps)), speech velocities (three different speakers), webcameras (Logitech Pro9000, C600 and C500) and image/sound delays (0-500 ms). All video simulations were presented with and without sound and in two screen sizes. Additionally, scores for live Skype™ video connection and live face-to-face communication were assessed. RESULTS Higher frame rate (>7 fps), higher camera resolution (>640 × 480 px) and shorter picture/sound delay (<100 ms) were associated with increased speech perception scores. Scores were strongly dependent on the speaker but were not influenced by physical properties of the camera optics or the full screen mode. There is a significant median gain of +8.5%pts (p = 0.009) in speech perception for all 21 CI-users if visual cues are additionally shown. CI users with poor open set speech perception scores (n = 11) showed the greatest benefit under combined audio-visual presentation (median speech perception +11.8%pts, p = 0.032). CONCLUSION Webcameras have the potential to improve telecommunication of hearing-impaired individuals.
Resumo:
OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.