4 resultados para spectral estimation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.
Resumo:
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T2.33TC.
Resumo:
We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.
Resumo:
Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using power spectral densities (PSDs) of the record of a single isotope species can be biased by uncertainties in spectral properties of the isotope signal prior to diffusion. By using a second water isotope and calculating the difference in diffusion lengths between the two isotopes, this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation-based method proves to be a good alternative for the PSD method as it yields precision equal to or somewhat higher than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. In addition to application to synthetic data the two methods are tested on stable-isotope records from the EPICA (European Project for Ice Coring in Antarctica) ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.