5 resultados para spectral vegetation indices

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to highly erodible volcanic soils and a harsh climate, livestock grazing in Iceland has led to serious soil erosion on about 40% of the country's surface. Over the last 100 years, various revegetation and restoration measures were taken on large areas distributed all over Iceland in an attempt to counteract this problem. The present research aimed to develop models for estimating percent vegetation cover (VC) and aboveground biomass (AGB) based on satellite data, as this would make it possible to assess and monitor the effectiveness of restoration measures over large areas at a fairly low cost. Models were developed based on 203 vegetation cover samples and 114 aboveground biomass samples distributed over five SPOT satellite datasets. All satellite datasets were atmospherically corrected, and digital numbers were converted into ground reflectance. Then a selection of vegetation indices (VIs) was calculated, followed by simple and multiple linear regression analysis of the relations between the field data and the calculated VIs. Best results were achieved using multiple linear regression models for both %VC and AGB. The model calibration and validation results showed that R2 and RMSE values for most VIs do not vary very much. For percent VC, R2 values range between 0.789 and 0.822, leading to RMSEs ranging between 15.89% and 16.72%. For AGB, R2 values for low-biomass areas (AGB < 800 g/m2) range between 0.607 and 0.650, leading to RMSEs ranging between 126.08 g/m2 and 136.38 g/m2. The AGB model developed for all areas, including those with high biomass coverage (AGB > 800 g/m2), achieved R2 values between 0.487 and 0.510, resulting in RMSEs ranging from 234 g/m2 to 259.20 g/m2. The models predicting percent VC generally overestimate observed low percent VC and slightly underestimate observed high percent VC. The estimation models for AGB behave in a similar way, but over- and underestimation are much more pronounced. These results show that it is possible to estimate percent VC with high accuracy based on various VIs derived from SPOT satellite data. AGB of restoration areas with low-biomass values of up to 800 g/m2 can likewise be estimated with high accuracy based on various VIs derived from SPOT satellite data, whereas in the case of high biomass coverage, estimation accuracy decreases with increasing biomass values. Accordingly, percent VC can be estimated with high accuracy anywhere in Iceland, whereas AGB is much more difficult to estimate, particularly for areas with high-AGB variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sonography is an important diagnostic tool to examine the gastrointestinal tract of dogs with chronic diarrhea. Two-dimensional grayscale ultrasound parameters to assess for various enteropathies primarily focus on wall thickness and layering. Mild, generalized thickening of the intestinal wall with maintenance of the wall layering is common in inflammatory bowel disease. Quantitative and semi-quantitative spectral Doppler arterial waveform analysis can be utilized for various enteropathies, including inflammatory bowel disease and food allergies. Dogs with inflammatory bowel disease have inadequate hemodynamic responses during digestion of food. Dogs with food allergies have prolonged vasodilation and lower resistive and pulsatility indices after eating allergen-inducing foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective-To evaluate pulsed-wave Doppler spectral parameters as a method for distinguishing between neoplastic and inflammatory peripheral lymphadenopathy in dogs. Sample Population-40 superficial lymph nodes from 33 dogs with peripheral lymphadenopathy. Procedures-3 Doppler spectral tracings were recorded from each node. Spectral Doppler analysis including assessment of the resistive index, peak systolic velocity-to-end diastolic velocity (S:D) ratio, diastolic notch velocity-to-peak systolic velocity (N:S) ratio, and end diastolic velocity-to-diastolic notch velocity ratio was performed for each tracing. Several calculation methods were used to determine the Doppler indices for each lymph node. After the ultrasonographic examination, fine needle aspirates or excisional biopsy specimens of the examined lymph nodes were obtained, and lymphadenopathy was classified as either inflammatory or neoplastic (lymphomatous or metastatic) via cytologic or histologic examination. Results of Doppler analysis were compared with cytologic or histopathologic findings. Results-The Doppler index with the highest diagnostic accuracy was the S:D ratio calculated from the first recorded tracing; a cutoff value of 3.22 yielded sensitivity of 91%, specificity of 100%, and negative predictive value of 89% for detection of neoplasia. Overall diagnostic accuracy was 95%. At a sensitivity of 100%, the most accurate index was the N:S ratio calculated from the first recorded tracing; a cutoff value of 0.45 yielded specificity of 67%, positive predictive value of 81%, and overall diagnostic accuracy of 86.5%. Conclusions and Clinical Relevance-Results suggested that noninvasive Doppler spectral analysis may be useful in the diagnosis of neoplastic versus inflammatory peripheral lymphadenopathy in dogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mean transit time (MTT) of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley) were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks) and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.