15 resultados para spaceborne laser range finder

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gynecomastia is the most common breast pathology. Numerous excisions and liposuction techniques have been described to correct bilateral male breast enlargement. Recently, there has been a shift from the open approach to minimally invasive techniques. This article reports a 5-year experience using laser-assisted lipolysis (LAL) to treat gynecomastia, and describes the surgical technique. Between January 2006 and December 2010, a total of 28 patients with bilateral gynecomastia were treated with LAL. Patients had a mean age of 36.5 years (range 24 to 56 years). LAL was performed with a 980-nm diode laser (continuous emission, 15 W power, 8-12 kJ total energy per breast) after tumescent anesthetic infiltration. The breast was evaluated objectively by two physicians who compared chest circumference and photographs. Patients were also asked to score the results using a visual analogue scale: 75 to 100 (very good), 50-74 (good), 25 to 49 (fair) and 0 to 24 (poor). The postoperative period for all patients was incident-free. After 6 months, 18 patients (64.3%) scored the results as "very good", 6 as "good" (21.4%), 3 as "fair" (10.7%) and 1 "poor" (3.6%). Mean chest circumferences pre- and postoperatively were, respectively, 117.4 ± 11.1 cm and 103.3 ± 7.5 cm (p < 0.001), corresponding to a mean difference of 14.1 cm. Physicians scored the photographs as "very good" in 22 patients (78.6%), as "good" in five patients (17.9%), and as "fair" in one patient (3.6%). LAL in gynecomastia is safe and produces significant effects on fatty tissue, with a reduction in breast volume, together with significant skin tightening. Provided an appropriate amount of energy is delivered by an experienced operator, the results are both significant and consistent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, non-invasive monitoring of tidal volume in infants has been performed using impedance plethysmography analyzed using a one or two compartment model. We developed a new laser system for use in infants, which measures antero-posterior movement of the chest wall during quiet sleep. In 24 unsedated or sedated infants (11 healthy, 13 with respiratory disease), we examined whether the analysis of thoracoabdominal movement based on a three compartment model could more accurately estimate tidal volume in comparison to V(T) measured at the mouth. Using five laser signals, chest wall movements were measured at the right and left, upper and lower ribcage and the abdomen. Within the tidal volume range from 4.6 to 135.7 ml, a three compartment model showed good short term repeatability and the best agreement with tidal volume measured at mouth (r(2) = 0.86) compared to that of a single compartment model (r(2) = 0.62, P < 0.0001) and a two compartment model (r(2) = 0.82, P < 0.01), particularly in the presence of respiratory disease. Three compartment modeling of a 5 laser thoracoabdominal monitoring permits more accurate estimates of tidal volume in infants and potentially of regional differences of chest wall displacement in future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Long-term outcome and complications of diode laser cyclophotocoagulation (DCPC) may be important, since eyes, once treated with DCPC, are less likely to be subjected to other types of interventions in the further follow-up. METHODS: Retrospective review of 131 eyes of 127 patients treated from 2000 through 2004. Success was defined as intraocular pressure (IOP) at last visit 6-21 mm Hg; hypotony: IOP laser energy delivered per eye: 133.9 (73.7) J; mean energy per treatment episode: 86.8 (22.0) J. Eyes with 3 or more treatments (11%) had a significantly larger proportion of post-traumatic glaucoma, and patients were significantly younger. All eyes had refractory glaucomas on maximal medication, neovascular glaucoma (NVG) representing the largest subgroup (61%). IOP decreased from 36.9 (10.7) mm Hg pretreatment to 15.3 (10.4) mm Hg at the end of FU. Success was noted in 69.5% (91 eyes), failure (non-response) in 13%. Hypotony occurred in 17.6% eyes, of which 74% had NVG. Hypotony developed after mean 19.3 (11.0) months, range 6 to 36; with 96% of these eyes having received only 1 or 2 treatments; delivered energy did not differ from that in the successful eyes. CONCLUSIONS: DCPC is an efficient treatment for refractory glaucoma. Hypotony, the most common complication, may develop as late as 36 months post-treatment. Diagnostic category and age seem to influence the outcome stronger than laser protocol and delivered energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated. METHOD: In the present study, a new technique for side-to-side anastomosis was developed. Using a "sandwich technique", two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason's Trichrome staining. FINDINGS: The achieved tensile strengths were significantly higher using the close contact "sandwich technique" as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength. CONCLUSION: These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a "sandwich laser irradiation device" for in vivo application in the rabbit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to determine the influence of polyvinyl chloride (PVC) wrapping on the performance of two laser fluorescence devices (LF and LFpen) by assessing tooth occlusal surfaces. BACKGROUND DATA: Protection of their tips may influence LF measurements. To date there are no studies evaluating the influence of this protection on the performance of the LFpen on permanent teeth, or comparing it to the original LF device. MATERIALS AND METHODS: One hundred nineteen permanent molars were assessed by two experienced dentists using the LF and the LFpen devices, both with and without PVC wrapping. The teeth were histologically prepared and assessed for caries extension. RESULTS: The LF values with and without PVC wrapping were significantly different. For both LF devices, the sensitivity and accuracy were lower when the PVC wrapping was used. The specificity was statistically significantly higher for the LFpen with PVC. No difference was found between the areas under the ROC curves with and without PVC wrapping. The ICC showed excellent interexaminer agreement. The Bland and Altman method showed a range between the upper and the lower limits of agreement of 63.4 and 57.8 units for the LF device, and 49.4 and 74.2 for the LFpen device, with and without PVC wrapping, respectively. CONCLUSIONS: We found an influence of the PVC wrapping on the performance of the LF and LFpen devices. However, since its influence on detection of occlusal caries lesions is considered for, the use of one PVC layer is suggested to avoid cross-contamination in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass spectrometric analysis of elemental and isotopic compositions of several NIST standards is performed by a miniature laser ablation/ionisation reflectron-type time-of-flight mass spectrometer (LMS) using a fs-laser ablation ion source (775 nm, 190 fs, 1 kHz). The results of the mass spectrometric studies indicate that in a defined range of laser irradiance (fluence) and for a certain number of accumulations of single laser shot spectra, the measurements of isotope abundances can be conducted with a measurement accuracy at the per mill level and at the per cent level for isotope concentrations higher and lower than 100 ppm, respectively. Also the elemental analysis can be performed with a good accuracy. The LMS instrument combined with a fs-laser ablation ion source exhibits similar detection efficiency for both metallic and non-metallic elements. Relative sensitivity coefficients were determined and found to be close to one, which is of considerable importance for the development of standard-less instruments. Negligible thermal effects, sample damage and excellent characteristics of the fs-laser beam are thought to be the main reason for substantial improvement of the instrumental performance compared to other laser ablation mass spectrometers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (< 1 GW/cm2) is used to achieve stable ion formation and low sample consumption. In comparison to our previous laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite laser ranging (SLR) to the satellites of the global navigation satellite systems (GNSS) provides substantial and valuable information about the accuracy and quality of GNSS orbits and allows for the SLR-GNSS co-location in space. In the framework of the NAVSTAR-SLR experiment two GPS satellites of Block-IIA were equipped with laser retroreflector arrays (LRAs), whereas all satellites of the GLONASS system are equipped with LRAs in an operational mode. We summarize the outcome of the NAVSTAR-SLR experiment by processing 20 years of SLR observations to GPS and 12 years of SLR observations to GLONASS satellites using the reprocessed microwave orbits provided by the center for orbit determination in Europe (CODE). The dependency of the SLR residuals on the size, shape, and number of corner cubes in LRAs is studied. We show that the mean SLR residuals and the RMS of residuals depend on the coating of the LRAs and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including the single-photon and multi-photon detection modes. We also show that the SLR observations to GNSS satellites are important to validate GNSS orbits and to assess deficiencies in the solar radiation pressure models. We found that the satellite signature effect, which is defined as a spread of optical pulse signals due to reflection from multiple reflectors, causes the variations of mean SLR residuals of up to 15 mm between the observations at nadir angles of 0∘ and 14∘. in case of multi-photon SLR stations. For single-photon SLR stations this effect does not exceed 1 mm. When using the new empirical CODE orbit model (ECOM), the SLR mean residual falls into the range 0.1–1.8 mm for high-performing single-photon SLR stations observing GLONASS-M satellites with uncoated corner cubes. For best-performing multi-photon stations the mean SLR residuals are between −12.2 and −25.6 mm due to the satellite signature effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupolemass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quadrupole mass spectrometer (QMS) has over 30 years of spaceflight heritage in making important neutral gas and low energy ion observations. Given their geometrical constraints, these instruments are currently operated at the extreme limit of their capabilities. However, a technique called higher order auxiliary excitation provides a set of novel, robust, electronics-based solutions for improving the performance of these sensors. By driving the quadrupole rods with an additional frequency nearly twice that of the normal RF operating frequency, substantially increased abundance sensitivity, maximum attainable mass resolution, and peak stability can be achieved through operation of voltage scan lines through the center of formed upper stability islands. Such improvements are modeled using numerical simulations of ion trajectories in a quadrupole field with and without applied higher order auxiliary excitation. When compared to a traditional QMS with a mass range up to 500Da, sensors can be designed with the same precision electronics to have expected mass ranges beyond 1500Da with a power increase of less than twice that of its heritage implementations.