6 resultados para soil testing

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil spectroscopy was applied for predicting soil organic carbon (SOC) in the highlands of Ethiopia. Soil samples were acquired from Ethiopia’s National Soil Testing Centre and direct field sampling. The reflectance of samples was measured using a FieldSpec 3 diffuse reflectance spectrometer. Outliers and sample relation were evaluated using principal component analysis (PCA) and models were developed through partial least square regression (PLSR). For nine watersheds sampled, 20% of the samples were set aside to test prediction and 80% were used to develop calibration models. Depending on the number of samples per watershed, cross validation or independent validation were used.The stability of models was evaluated using coefficient of determination (R2), root mean square error (RMSE), and the ratio performance deviation (RPD). The R2 (%), RMSE (%), and RPD, respectively, for validation were Anjeni (88, 0.44, 3.05), Bale (86, 0.52, 2.7), Basketo (89, 0.57, 3.0), Benishangul (91, 0.30, 3.4), Kersa (82, 0.44, 2.4), Kola tembien (75, 0.44, 1.9),Maybar (84. 0.57, 2.5),Megech (85, 0.15, 2.6), andWondoGenet (86, 0.52, 2.7) indicating that themodels were stable. Models performed better for areas with high SOC values than areas with lower SOC values. Overall, soil spectroscopy performance ranged from very good to good.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activated carbon has become a widely used tool to investigate root-mediated allelopathy of plants, especially in plant invasion biology, because it adsorbs and thereby neutralizes root exudates. Allelopathy has been a controversially debated phenomenon for years, which revived in plant invasion biology as one possible reason for the success of invasive plants. Noxious plant exudates may harm other plants and provide an advantage to the allelopathic plant. However, root exudates are not always toxic, but may stimulate the microbial community and change nutrient availability in the rhizosphere. In a greenhouse experiment, we investigated the interacting effects of activated carbon, arbuscular mycorrhiza and plant competition between the invasive Senecio inaequidens and the native Artemisia vulgaris. Furthermore, we tested whether activated carbon showed any undesired effects by directly affecting mycorrhiza or soil chemistry. Contrary to the expectation, S. inaequidens was a weak competitor and we could not support the idea that allelopathy was involved in the competition. Activated carbon led to a considerable increase in the aboveground biomass production and reduced the infection with arbuscular mycorrhiza of both plant species. We expected that arbuscular mycorrhiza promotes plant growth by increasing nutrient availability, but we found the contrary when activated carbon was added. Chemical analyses of the substrate showed, that adding activated carbon resulted in a strong increase in plant available phosphate and in a decrease of the C(organic)/N(total) ration both of which suggest stimulated microbial activity. Thus, activated carbon not only reduced potential allelopathic effects, but substantially changed the chemistry of the substrate. These results show that activated carbon should be handled with great care in ecological experiments on allelopathy because of possible confounding effects on the soil community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.