11 resultados para soil gas fluxes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.
Resumo:
High ³⁷Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of ³⁷Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict ³⁷Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating ³⁷Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for ³⁷Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural ³⁷Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of ³⁷Ar activity concentrations. The influence of soil water content on ³⁷Ar production is shown to be negligible to first order, while ³⁷Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.
Resumo:
67P/Churyumov-Gerasimenko (67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P’s neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 10²⁶ molecules s⁻¹.
Resumo:
In preparation for the Russian Luna-Resurs mission we combined our compact time-of-flight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Coupled measurements with both instruments were successfully performed with the prototype of the mass spectrometer and a flight-like gas chromatograph. The system was tested with two test gas mixtures, a mixture of hydrocarbons and a mixture of noble gases. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 10(6) within 1 s, the TOF-MS system is a valuable extension of the GC analytical system. Based on the measurements with calibration gases performed with the combined GC-MS prototype and under assumption of mean characteristics for the Moon's regolith, the detection limit for volatile species in a soil sample is estimated to 2.10(-10) by mass for hydrocarbons and 2.10(-9) by mass for noble gases. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Since the analysis of the lunar rocks and soil samples, brought to Earth by the Apollo missions, it is believed that the Moon has a waterless nature and also other volatile species are strongly depleted. Advancement in analysis techniques helped to identify water and other volatile species in lunar volcanic glasses. Additionally, recent lunar space missions detected water and volatile organic compounds in the region of the lunar poles where permanently shadowed craters are existing. All known lunar soil samples available on Earth come from the lunar near side, close to the equator. To verify the most recent measurement results and to enhance the knowledge of the geological history of the Moon it is of high interest to perform in situ measurements on the lunar poles. For this reason the Russian space agency, Roskosmos, developed aprogram for the scientific exploration of the lunar poles. The Gas Analysis Package (GAP) is part of the selected scientific payload aboard the Luna-Resurs Lander. This instrument uses pyrolytic cells and will apply laser spectroscopy, gas chromatography and mass spectrometry to detect and analyze volatile components trapped in the lunar soil. An existing ion optical design of a compact reflectron type time-of-flight mass spectrometer, originally built for the MEAP/P-BACE balloon mission, was chosen as a part of the GAP instrument. The scope of this thesis is the development of the interface between gas chromatography (GC) and this Neutral Gas Mass Spectrometer (NGMS) to perform coupled GC-MS measurements. In the first part of this thesis the interfacing concept was developed and verified by coupling the NGMS prototype to gas chromatography. The second part of this thesis is devoted to the development of the NGMS flight version.
Resumo:
Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.
Resumo:
Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.
Resumo:
The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.
Resumo:
Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.
Resumo:
Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixingratios have been operated since the mid-2000’s in Siberia. For the first time in a single work, we assimilate 1 year of these in situ observations in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the mesoscale in the Siberian lowlands for the year 2010. To do so, we first inquire about the way the inversion uses the observations and the way the fluxes are constrained by the observation sites. As atmospheric inver- sions at the mesoscale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversion systems. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution quasi-continuous signal is representative of very local emission patterns difficult to analyse with a mesoscale system. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites than the ones currently in operation are then necessary to constrain the whole Siberian lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. Finally, the tolerance intervals for posterior methane fluxes are of roughly 20 % (resp. 50 %) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70 % of Siberian lowlands emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian lowlands, we find a regional methane budget of 5–28 TgCH4 for the year 2010, i.e. 1–5 % of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are tentatively used for the evaluation of the inversion results, but they exhibit only a marginal signal from the fluxes within the region of interest.