9 resultados para soil chemical properties

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural abundance of stable Se isotopes in methylselenides reflects sources and formation conditions of methylselenides. We tested the effects of (i) different inorganic Se species spiked to soils and (ii) different soil samples on the extent of fungal biomethylation of Se and the Se isotope ratios (δ82/76Se) in methylselenides. Furthermore, we assessed the decrease of dissolved, bioavailable Se during three days of equilibration of the soils with Se-enriched solutions. We conducted closed microcosm experiments containing soil spiked with Se(IV) or Se(VI), a growth medium, and the fungus species Alternaria alternata for 11 d. The concentrations and isotope ratios of Se were determined in all components of the microcosm with multicollector ICP-MS. The equilibration of the spiked Se(IV) and Se(VI) for 3 d resulted in a decrease of dissolved, bioavailable Se concentrations by 32 to 44% and 8 to 14%, respectively. Very little isotope fractionation occurred during this phase, and it can be attributed to mixing of the added Se with the pre-existing Se in the soils and minor Se(IV) reduction in one experiment. In two of the incubated soils – moderately acidic roadside and garden soils – between 9.1 and 30% of the supplied Se(IV) and 1.7% of the supplied Se(VI) were methylated while in a strongly acidic forest soil no Se methylation occurred. The methylselenides derived from Se(IV) were strongly depleted in 82Se (δ82/76Se = − 3.3 to − 4.5‰) compared with the soil (0.16–0.45‰) and the added Se(IV) (0.20‰). The methylselenide yield of the incubations with Se(VI) was too small for isotope measurements. Our results demonstrate that Se source species and soil properties influence the extent of Se biomethylation and that the produced methylselenides contain isotopically light Se.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water flow and solute transport through soils are strongly influenced by the spatial arrangement of soil materials with different hydraulic and chemical properties. Knowing the specific or statistical arrangement of these materials is considered as a key toward improved predictions of solute transport. Our aim was to obtain two-dimensional material maps from photographs of exposed profiles. We developed a segmentation and classification procedure and applied it to the images of a very heterogeneous sand tank, which was used for a series of flow and transport experiments. The segmentation was based on thresholds of soil color, estimated from local median gray values, and of soil texture, estimated from local coefficients of variation of gray values. Important steps were the correction of inhomogeneous illumination and reflection, and the incorporation of prior knowledge in filters used to extract the image features and to smooth the results morphologically. We could check and confirm the success of our mapping by comparing the estimated with the designed sand distribution in the tank. The resulting material map was used later as input to model flow and transport through the sand tank. Similar segmentation procedures may be applied to any high-density raster data, including photographs or spectral scans of field profiles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical investigations of superheavy elements in the gas-phase, i.e. elements with Z≥104Z≥104, allow assessing the influence of relativistic effects on their chemical properties. Furthermore, for some superheavy elements and their compounds quite unique gas-phase chemical properties were predicted. The experimental verification of these properties yields supporting evidence for a firm assignment of the atomic number. Prominent examples are the high volatility observed for HsO4 or the very weak interaction of Cn with gold surfaces. The unique properties of HsO4 were exploited to discover the doubly-magic even–even nucleus 270Hs and the new isotope 271Hs. The combination of kinematic pre-separation and gas-phase chemistry allowed gaining access to a new class of relatively fragile compounds, the carbonyl complexes of elements Sg through Mt. A not yet resolved issue concerns the interaction of Fl with gold surfaces. While competing experiments agree on the fact that Fl is a volatile element, there are discrepancies concerning its adsorption on gold surfaces with respect to its daughter Cn. The elucidation of these and other questions amounts to the fascination that gas-phase chemical investigations exert on current research at the extreme limits of chemistry today.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.